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Abstract

Our modern society relies increasingly on the sound performance of digital systems.
Guaranteeing that these systems actually behave correctly according to their specifica-
tion is not a trivial task, yet it is essential for mission-critical systems like auto-pilots,
(nuclear) power-plant controllers and your car’s ABS.

The highest degree of certainty about a system’s correctness can be obtained via
mathematical proof, a tedious manual process of formally describing and analyzing the
system’s behavior. Especially the latter step is tedious and requires the creativity of
a mathematician to demonstrate that certain properties are preserved under the strict
mathematical rule system. With the invention of “model checking”, this part of this
process became automated, by letting a computer exhaustively explore the behavior of
the system.

However, the size of the systems that can be “model checked” is severely limited
by the available computational resources. This is caused by the so called state explo-
sion, a consequence of the fact that a machine can only perform small mechanized
computations and does not exhibit the creativity to make generalizing (thinking) steps.
Therefore, the goal of the current thesis is to enable the full use of computational power
of modern multi-core computers for model checking. The parallel model checking pro-
cedures that we present, utilize all available processor cores and obtain a speedup pro-
portional to the number of cores, i.e. they are “scalable”.

The current thesis achieves efficient parallelization of a broad set of model checking
problems in three steps, each described in one part of the thesis:

First, we adapt lockless hash tables for multi-core, explicit-state reachability, the
underlying search method that realizes the exhaustive exploration of the system’s be-
havior. With a concurrent tree data structure we realize state compression, and reduce
memory requirements significantly. Incremental updates to this tree further ensure sim-



ilar performance and scalability as the lockless hash table, while the combination with
a compact hash table realizes small compressed sizes of around 4 bytes per state, even
when storing more than 10 billion states. Empirical evidence shows that the compres-
sion rates most often lie within 110% of this optimal.

Second, we devise parallel nested depth-first search algorithms to support model
checking of LTL properties in linear time. Building on the multi-core reachability, we
let worker threads progress semi-independently through the search space. This swarm-
based technique leverages low communication costs through the use of optimistic, yet
possibly redundant work scheduling. It could therefore become more important in fu-
ture multi-core systems, where communication costs rise with the increasing steepness
of memory hierarchies. Experiments on current hardware already demonstrate little
redundancy and good scalability.

Third, to support verification of real-time systems as well, we extend multi-core
reachability and LTL checking to the domain of timed automata. We develop a lockless
multimap to record time-abstracted states, and also present algorithms that deal with
coarse subsumption abstraction for the verification of LTL for solving larger problem
instances. The scalability, memory compression and performance are all maintained
in the timed setting, and experiments therefore show great gains with respect to the
state-of-the-art timed model checker uppAAL.

The above techniques were all implemented in the model checking toolset LTSwmin,
which is language-independent, allowing a direct comparison to other model checkers.
We present an experimental comparison with the state-of-the-art explicit-state model
checkers spiN and D1VINE. Both implement multi-core algorithms, while DIVINE also
heavily focuses on distributed verification. These experiments show that our proposed
techniques offer significant improvements in terms of scalability, absolute performance
and memory usage.

Current trends and future predictions tell us that the available processing cores in-
crease exponentially over time (Moore’s Law). Hence, our results may stand to gain
from this trend. Whether our proposed methods will withstand the ravages of time is to
be seen, but so far the speedup of our algorithms has kept up with the 3-fold increase in
cores that we have witnessed during this 4-year project.
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Introduction

The topic of the current thesis is the improvement of methods for establishing correct-
ness and identifying faults in digital systems, both software and hardware. The current
chapter provides an introduction to this topic which is mainly written for other computer
scientists, but which should be understandable for a broader technically oriented audi-
ence. illustrates the importance of correctly functioning digital equipment
in our modern society, while goes on to show that technological advance-
ments make these systems rapidly more complex, thereby increasing the challenge to
guarantee their correctness.

Next, [Section 1.3]outlines the field of Formal Methods, which aims at establishing
mathematically rigorous methods that guarantee dependability for (software and hard-
ware) systems. The thesis focuses in particular on a technique called model checking,
which given a formally stated requirement, fully automatically establishes correctness
of a system, or if the system is buggy, returns a counterexample that can be used for
reparations. studies this method therefore in more detail.

The benefit of model checking is that it delivers mathematical proofs in a completely
mechanical fashion: The procedure can be implemented as a (software) tool, a so-called
model checker, which takes the system-under-development as input and can be run by
any system engineer, whether expert mathematician or mathematical illiterate. The
downside, on the other hand, is that the systems that a model checker can handle are
severely limited in size by the available computational resources. Therefore, the goal of
the current thesis is to enable the full use of computational power of modern multi-core
computers for model checking. [Section 1.5|outlines this goal and its subcomponents in
more detail.

Multi-core processors are quickly becoming ubiquitous because efforts to speedup



computers by increasing their clock frequencies have halted the past decade due to phys-
ical limitations. explains this trend and studies the real challenge behind
leveraging the power of multi-core processors. It identifies both conceptual difficulties,
e.g. the model checking task has to be split up in multiple, more-or-less independent
tasks, and technical ones, e.g. modern hardware provides limited memory bandwidth
and is hard to program correctly and efficiently.

Nonetheless, the current thesis provides proven, scalable solutions for many impor-
tant disciplines in the field of model checking. These contributions are summarized in

Finally, provides an overview of the contents and a reading

guide for the current thesis.

1.1 The Societal Impact of Failing Digital Systems

In 1994, Intel released its latest and fastest Pentium processor. Shortly after, the interna-
tional media reported the discovery of a bug in its calculation of floating point numbers.
After mounting public pressure, the company was forced to recall the chips, leading to
an estimated write-down of almost half a billion dollars [[Unk95]], not to mention a loss
of goodwill. This news event provides a good example of the financial stake that com-
panies have in producing digital systems on a massive scale. Especially considering the
fact that only a small percentage of customers decided to go through all the hassle of
sending back their processors for the mere problem that it introduces an error in only 1
out of 9 billion floating point division calculations [Hal93] (a defect that probably only
affects scientific experiments and not day-to-day office applications and probably not
even computer games).

Four years later, in December 1998, NASA send its Mars Climate Orbiter onto a
voyage through outer space of 9 months towards the red planet. Upon arrival the $125
million spacecraft promptly disintegrated in the planet’s atmosphere. It turned out that
the NASA crew communicated with the craft using US customary units, whereas its
software “spoke” the international system of units [Ste+99|]. This simple mistake not
only wasted a lot of money, it also set back the clock on progress in space exploration by
several years. Unfortunately, the example represents only a single failure in a long string
of at least 10 space exploration missions that either failed or seriously under-performed
due to software bugs [Joh13].

The worst examples on the societal cost of failing devices involves those that our life
actually depends on, the so-called safety-critical systems. Luckily, the practice shows
that usually we can depend on the most crucial systems, like autopilots in airplanes, air-
traffic guidance systems at airports, board computers that control car engine acceleration
and braking, etc. At the bottom-line these systems make our modern fast-paced lives



safer. However, as these electronic systems become more pervasive, our dependence on
them rapidly increases.

Several unfortunate examples remind us of the risks involved. A failing acceler-
ation control system in cars of a certain maker, may have resulted in 37 deaths since
2000 [Heallf], forcing the manufacturer to pay over $1 billion in damages and re-
call over 8 million sold cars [Zalll]]. Other horrendous examples resulting with fatal
consequences include: X-ray machines delivered too high radiation dosages [LT93]],
a race condition triggered in an energy management system caused a two day power
outage across large swaths of the north-eastern USA [Pou04]], and a round-off error
caused Patriot missiles to malfunction which then failed intercept an incoming Iraqi
missile [Ske92].

This short historical review of malfunctioning digital equipment constitutes only a
small portion of the accidents that became public. And as companies and governments
often tend to hide such problems behind the curtains, we may reasonably expect that
this is just the tip of the iceberg. Moreover, human behavior quickly adapts to the newly
available technology. For example, we pack our bags according to the weather report
on our smart phone, and few people ever still bring blankets on long (car) rides to guard
for strong weather. So not only are digital systems becoming omnipresent, we also tend
to become more reliant on them in our day-to-day lives.

All these developments, in conclusion, call for mathematically rigorous methods for
the verification of correctness of digital systems.

1.2 Parallelism and Moore’s Law

The expanding influence of digital systems also led to aggressive investment in their fur-
ther development. Large companies, such as IntelTM, AMDTM, and ARMTM, were able
to manufacture ever faster processor microchips by reducing the sizes of the transistors
on the chip’s surface. Some economists maintain that these technological advances are
at the basis of economic progress over the last decades [Hut09; MD13]] and even that
the death of the law could cause economic downturn [Dunl 1f]. The flip-side of this de-
velopment is that these processors become more complicated by the year, which in turn
increases the difficulty of programming these devices and the likelihood of the presence
of bugs in both hardware and software.

Moore’s law [Moo65] stipulates that the number of transistors on a chip doubles ev-
ery 18 months. This law has held for almost 5 decades after the Intel founder originally
coined it. Recent news indicates however that processor manufacturers need to over-
come ever larger problems because the structure of the transistors, measuring currently
only 8 nanometer in extremes [[Coul3|], is reaching the physical limitations (a silicon
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Figure 1.1: Moore’s law in practice: Since 2002, CPUs stopped getting exponentially
faster as shown by the the MHz line and sequential SPECint benchmark line (1 CPU).
Instead, they only become linearly faster and only got 4x faster in 10 years. Also since
2002, however, the number of cores in the systems has increased exponentially. (Taken

from [App13))

atom is 0.2 nm in diameter). However, according to many industry experts the law will
hold at least for the following decade.

Some believe erroneously that Moore’s law is already dead, due to the fact that
processor frequencies have plateaued in the previous decade (see[Figure T.T). However,
an increase in clock frequencies is merely a consequence of Moore’s law. The increase
in transistor counts can equally well be used for additional parallelism. Hence in the past
decade, we also witnessed an exponential increase in the number of processor cores.

The downside of this development is that the free lunch is over, in the sense that
our algorithms do no automatically profit from the next generation of processors (an
exponential gain). Therefore, these algorithms need to be parallelized. However, par-
allel programming again adds more complexity. It is well known that the complexity
of sequential computer programs can be daunting for even the best programmers, be-
cause she needs to consider all the possible states that her program can be in. Adding
parallelism makes matters worse. As each parallel thread can be at any state in the
computation, the number of different states exponentially increases with the number of
threads. Often a few threads in a simple procedure already increase complexity beyond



our immediate understanding. Depending on the experience of the programmer, project
organization, and programmatic abstraction, software is known to contain at least a few
bugs per thousand lines of code. Many systems consist of millions of lines of code.

1.3 Formal Methods

As a branch of computer science, formal methods is concerned with mathematical tech-
niques for the specification, development and verification of software and hardware sys-
tems. Its primary aim is to establish ways to conceive these systems in such a way that
they guarantee their stated requirements in all circumstances. A secondary aim is to
establish certain quantifiable characteristics of the system in order to optimize them.
For example, to determine probability of failure of the system, so that it can be opti-
mized to achieve the highest possible dependability [Bai+03}; | BCSO07; Bou+08|]. But a
system can also be analyzed using some cost metric, such as its power consumption,
throughput, or memory use [AFS04; Tim13].

In the current thesis, we focus solely on verification of correctness, and do not treat
the latter, so-called quantitative verification methods. In this case, correctness means
the complete absence of errors, i.e. violations of the stated requirements. Verifica-
tion therefore distinguishes itself from testing [MSB11; |LuoO1]], which merely tries to
identify errors in a system by trying as many of its execution paths as possible. Even
formal approaches to testing [[Ire99; BBS06]] do not guarantee that errors cannot occur
on some obscure, untested path that might happen in practice (for example if the sys-
tem runs a very long time, or if its environment changes in some way unforeseen by
the test cases). Verification on the other hand provides a formal proof that the system
is correct with respect to the stated requirement, i.e. that all possible behavior of the
system respects the requirement. But there is another, more subtle difference between
testing and formal verification techniques. While testing allows for the inclusion of the
system’s complete environment, verification does so only in a limited sense, because it
requires that all behavior is formally specified. However, this does make the verified
behavior explicit, in contrast to testing where any input from the environment might be
accidental [Rom99|.

In the previous section, we saw the importance of verification for the users of mission-
critical and safety-critical systems. For a further discussion of verification methods, it
might be useful to discuss how a formal approach to correctness is just as important
for the system developers themselves. As systems grow increasingly complex with the
exponential growth rates in processor speeds and memory sizes (Moore’s law was dis-
cussed in[Section 1.2)), it becomes less feasible for a programmer or circuit designer to
maintain an understanding of the complete system that is being developed. A layman



may view these engineers as wizards with magic abilities, research however suggests
that they are just as limited by their cognitive abilities [SM79], which in turn is famously
limited by short-term memory that can track around seven objects at a time [Mil56].

To overcome these cognitive limitations, there is a continuous trend to increase
the level of abstraction in programming languages. Despite early objections from for
instance von Neumann, the father of the modern stored-program computer architec-
ture, who became infuriated at his student’s attempt to create the first assembly lan-
guage [[LL935[], imperative languages quickly gained ground with FORTRAN [Bac7§].
Later, with Java and .NET, strictly typed languages have become more dominant. The
same trend can be witnessed for hardware specification languages, e.g. [Baa+10]. One
could argue that the functional languages, with their closer correspondence to a mathe-
matical description, would be the logical next step. Indeed, in practice this shift seems
ongoing with e.g. the introduction lambda expressions in the Java language.

From the Curry-Howard correspondence [CF58; [How80], we know that type sys-
tems are a kind of proof systems, so in a sense programmers are already delivering
limited proofs for the code they write: types deliver a proof that the computed value
is of the correct kind. The above brief history therefore demonstrates the necessity of
formal methods in system development.

The next step to a complete proof system would be to prove that the computed re-
sult has the right value. Such a full proof system is realized by the first verification
method that we discuss now: In proof carrying code [Nec02] (PCC), types are in effect
replaced by proofs, forcing a programmer to provide a mathematical specification of
the computed value at each step of the computation (for each return value / for each
assignment), which can be checked by the compiler. Making proofs a first-class citizen
of the language of course has the downside that it puts the burden of writing these often
long proofs completely on the shoulders of the programmer.

Static analysis, another verification technique, employs a similar, but coarser way,
to include proofs in the source code. Code is often annotated (second-class citizen)
on the level of functions. The variants of this approach are too numerous to list and
evaluate here. Assertion-based reasoning could be considered an early version of static
analysis, and includes the predicate logic suggested by Hoare [Hoa69], which could be
used in assertions and also inspired Dijkstra to come up with a guarded-command lan-
guage [Dij75[]. More modern examples use separation logic [ORYO1} IO01]] or abstract
interpretation [[CC77]. Verifast [JPOS8| is an example of a successful static analysis tool.

Theorem provers, on the other hand, separate the proof obligations completely from
the code by expressing them in a functional formalism, which allows an automated way
to discharge them. These tools have a long history with early successes [DLL62], and
recent tools like Isabelle/HOL [PWO02] have proved valuable for the machine-based ver-
ification of a large set of algorithms and mathematical theorems [Sut09]]. Recently, they



are also used to generate executable code from the proof specification to automatically
derive a correct functional program [Esp+13].

Finally, model checking could be considered the most automated method of verifi-
cation. It operates under the assumption that the system under verification has a finite
number of states, or configurations, which can be modified through (internal) execution
steps, or state transitions, in the system. The method then explores all reachable states to
find states or traces (execution paths) that violate the requirement in question. This way,
it mechanically checks whether a system M is a model of a property @, or stated mathe-
matically: M = ¢. The requirement needs to be stated in some concise formalism. The
system is often also expressed in a more mathematical formalism, e.g. a process alge-
bra [Gro+08]] or some domain-specific language [Hola]. However, in software model
checking [HS99; JM09; BNRQ9], the implementation of the system is used directly in
the verification process, lowering the entry threshold for users significantly.

The exhaustive exploration of all reachable states, makes model checking a com-
pletely automated method for proof derivation. It is therefore the topic of the cur-
rent thesis.

1.4 Model Checking

shows the workflow in model checking. The model checker tool is repre-
sented as a box. It takes as input a formal description of the requirement (¢), which
we will call the property, and a formal description of the system (M), which can be
modeled in some concise specification language. It is often pointed out that the mere
task of formalizing property and system in this way already improves the engineer’s un-
derstanding of both system and requirements (represented by the cloud-shaped nodes
in the diagram), potentially eliminating existing inconsistencies upfront [BKO8, Sec-
tion 1.1]. In the literature, this formalization process is often referred to as “model-
ing” the system/property, though this somewhat inaccurately describes the originally
intended meaning of the mathematical ‘model of” relation as described in the preced-
ing section [Cla08]]. The formalization is often done manually, but can be automated
for example by translating the system [ClaO8|] or by using its implementation directly
as done in software model checking.

Depending on the nature of the system-under-verification, different languages are
used to formalize its behavior. Software systems, such as communication protocols
and controllers, can be expressed using (extended) state machines (to which about any
programming language can easily be translated). If the system includes crucial timing
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Figure 1.2: The workflow in modelchecking

behavior, e.g. a real-time system, or interacts with analog physical components, e.g. a
thermostat, it can be modeled using timed automata, or their superset: hybrid automata,
which model this behavior using continuous variables, e.g. clocks. Probabilistic and
stochastic behavior can be expressed using probabilistic automata. For all of these
types of systems, multiple alternative formalisms exist, e.g.: timed Petri nets [Ram74],
timed process calculi [BB91] and probabilistic process algebras [[Tim13|].

Via exhaustive exploration of the system’s state, while taking into account the se-
mantics of the property, the model checker can prove the system’s correctness, or more
precisely that the system is a model of its requirements: M |= ¢. If the opposite however
is true, there exists some state in the system or some execution through the system, that
violates a stated requirement in the form of a property. In this case, a nice feature of the
model checker is that it is able to deliver a counterexample in the form of an execution
trace. The counterexample can then be used to improve the system specification and/or
the property (the latter is not drawn in the figure).

A distinction is often made between safety and liveness properties. Safety properties
state properties of the kind: “nothing bad ever happens”. While liveness properties
also reason over (infinite) paths: “eventually something good happens” [BKOS]|. Since
safety properties reason over individual states and actions, it suffices to find a finite
trace in which the property is violated to demonstrate that the property does not hold.
Many simple safety properties, such as deadlocks and invariants, can be checked by



establishing reachability of states in which these properties are violated (which can be
checked locally on a state). Liveness properties, on the other hand, require a more
complicated analysis.

To express liveness properties several logics were developed. It is still up for de-
bate which is the best suitable for model checking [[VarOll]. The computational tree
logic (CTL) is a branching-time logic that expresses properties over some or all paths
in the system [BKOS8|, Chapter 6]. The problem of CTL model checking was shown to
be linear time in both the size of the system |M| and the size of the property |@| [EL87].
While linear temporal logic (LTL) on the other hand, expresses properties over all paths
and is linear in |M|, but exponential in |¢|. However, many properties of interest can be
expressed exponentially shorter in LTL [BKO8, Chapter 6]. Moreover, the expressive-
ness of LTL and CTL are incomparable, i.e. both languages contain properties that are
inexpressible in their counterpart [BKOS|.

To overcome the limitations of CTL and LTL, several other languages have been
invented. CTL* is a branching-time logic that expresses a superset of both LTL and
CTL. The modal p-calculus expresses a far broader set of properties, but its general
checking procedure is also more complex than LTL [Eme97|]. Although the subset of
the p-calculus needed to express LTL properties can be checked as efficiently as LTL
itself [CGR11] and also on-the-fly [MSO3|, there are still important advantages to LTL-
based model checking: compositionality of formulae, understandability of formulae,
and its automata-theoretic approach [[VarOl|].

1.4.1 An Archeology of Model Checking

Recounting Edmund E. Clarke’s “The Birth of Model Checking” [Cla08]|], we find that
the earliest exhaustive state exploration techniques can be traced to Bochmann [Boc78§],
who used it for the verification of protocols. Around the same time, Holzmann also
worked on similar methods for concurrent system and protocol verification [Holb]],
which were not implemented until 1980 [Hol81].

The novelty of the contribution of Clarke, Emerson and Sifakis [|[CE82;|QS82]], that
eventually won them a Turing award[[CES09]], was their combination of exhaustive state
exploration with Pnueli’s [Pnu77|] definition of temporal logic. The latter constitutes an
ideal formalism for expressing all kinds of (liveness) properties over program execu-
tions. While Hoare logic from 1969 [Hoa69] only allowed the expression of functional
properties over statements and functions in a program, temporal logic takes entire exe-
cution paths into account.

The EMC model checker, developed by Clarke [CES86], implements an algorithm
that checks computational tree logic (CTL) in time linear to |[M| and |¢@|. Later, the
automata-theoretic approach for LTL checking was developed, replacing the property




with an @w-automaton that expresses infinite paths [VWS86|. Both approaches are called
explicit-state model checking, since the state descriptors are represented as raw data, as
opposed to a mathematical (symbolic) description of the system’s states and transitions.

Further developments in model checking allowed larger systems to be verified by
reducing or compressing the exponentially-sized state space. E.g., partial-order reduc-
tion [Ove81};|Val88}; [KP88a; |God90]] was introduced to prune traces from the transition
system that are not of interest to the property that is being verified. It can yield exponen-
tial reductions [Val98|]. McMillan [McM92|| used binary decision diagrams [|Bry86] to
symbolically represent the transition system (state space and transition relation) con-
cisely. In[Section 1.4.3] we detail these and other methods to combat state-space explo-
sion. In the following section, we first illustrate some successful applications of mode
checking.

1.4.2 Model Checking Successes

Model checking was hugely successful. The early EMC tool found bugs in existing
published circuits [[Cla08}; |QSOS].

Holzmann is another pioneer in the development of model checkers. His early pan
verifier [Hol81]], a predecessor to spiN [Holl 1], was successful in identifying bugs in
existing protocol specifications [Hol81]. spiN was later used to verify the FireWire
protocol [LRGO3], subsystems of NASA’s Mars rover [HJ04]], and many communication
protocols [Hol90; [Hol91]).

The model checker Mur@ was used to verify cache coherence protocols [Che+07]
and cryptographic protocols [MMS97]]. While the process-algebraic model checkers
UCRL [Blo+07] and mCRL2 [Gro+08; (Cra+13|] were used to verify industrial case
studies and communication protocols.

PRISM [KNP11] solved a large set of (probabilistic) communication, network, and
multimedia protocols. And uppaaL was used verify industrial case studies and proto-
cols. PAT [LSD11]] showed successes in the verification of sensor networks and real-
time systems.

SLAM [BRO1}; BRO2|] won considerable respect in the verification community for
its successful application of symbolic verification techniques to solve the problem of
checking device drivers for Microsoft "~ Windows. Using related techniques, though
oriented more towards testing, the tool SAGE [|GLM+08|| “fuzzes” for bugs in a wide
array of Microsoft products. This technique symbolically generates different inputs for
white box testing. It runs 24/7 on very large scale clusters to identify as many faults
as possible in new software releases. This the investment in this expensive effort is
quickly repaid, because each patch release that is avoided, saves the company millions
of dollars.



1.4.3 Dealing with State-Space Explosion

The exhaustive state exploration technique discussed above, expands the system de-
scription M as a transition system or Kripke structure [Kri71]. Such a structure is the
equivalent of the mathematical definition of a directed graph or digraph, annotated with
additional labels at the vertices and/or arcs (directed edges). Computations of state-
ments or functions in the system constitute the arcs/transitions in the graph/transition
system. These transitions often lead to a new global state in the system under veri-
fication, with different program counters and data values than the source state of the
corresponding transition. We simply refer to the full descriptor containing all these
variable valuations: the state or state descriptor. This term is used as synonymous for
the vertex/ node in the graph / transition system that it is part of.

We call all possible valuations of the variables in a system, i.e. program counters,
communication channels and data variables, the syntactic state space. The number of
reachable states is often only a small subset of the syntactic state space and can be
obtained via the exhaustive state exploration. Therefore, we often simply call this pro-
cedure reachability. Reachability starts at the initial system state and searches for new
states, by executing all possible transitions at a state. To this end, it needs only to store
the stack of the search to avoid infinite repetition in the search as Savitch’s algorithm for
the STCON problem demonstrates [Sav70|]. However, the different paths through the
transition system are often so numerous that such an approach leads to exponential com-
plexities (in the number of reachable states and transitions). For this reason, the search
procedure often maintains a set containing all previously visited states. Upon comple-
tion of the reachability procedure, this set then contains all reachable states, which we
will call the semantic state space or simply state space.

For efficient model checking, the state space needs to be stored in main memory.
This memory is fast enough to verify systems in reasonable time, while at the same
time large enough to explore systems of interest. A state space is know to be exponen-
tial in the size of the system, i.e. the number of (parallel) components, data variables
and channel buffers. Moreover, a property can also be exponential in the size of the
predicates it contains and is often combined with the state space using some cross prod-
uct procedure, leading to even larger state spaces. Therefore, dealing with state-space
explosion is the most important problem in model checking.

1.4.3.1 Explicit-State Techniques

The main dichotomy in model checking approaches is between explicit and symbolic
techniques. In the explicit approach, the reachable states are stored in full, as vectors
containing the data values of the variables in the system, while the symbolic approach




uses mathematical equations to represent entire sets of states. The preferable approach
depends on the nature of the input system: hardware systems and other systems with
high parallelism tend to be handled effectively with symbolic approaches, while soft-
ware systems usually are better verified using explicit approaches.

On-the-fly exploration. The main advantage of the explicit approach is that states
are processed individually, so the search can be limited to relevant parts of the state
space. The so-called on-the-fly exploration in automata-theoretic model checking [VW80|
synchronizes the state-space exploration with the steps in the automaton representing
the property. When the system contains bugs, the exploration can stop upon detecting
a counterexample, saving computational resources to explore (and store) other parts of
the state space.

State compression. To reduce the memory requirements for model checking sys-
tems with large state descriptors, we can compress states. One option is to apply lossy
compression and only store one or multiple hash values per state in a hash table [GVR99;
WLI3; IDMO9| or a Bloom filter [DMOA4]]. The downside however is that these ap-
proaches, i.e. supertrace/bit-state hashing [Hol98|] and hash compaction [GVR99], sac-
rifice the typical completeness property of model checking. In the case of liveness
verification, soundness is also problematic [BHR13|.

State-space caching. To improve upon the previous methods, a model checker can
further attempt to avoid the storage of states in memory completely by heuristically
caching only parts of the state space. A trivial technique is to employ depth-first search
(prs) and only store the stack [Sav7/0] (as opposed to storing all visited states). This
may result however in exponential runtime. Therefore, the DFs technique is often com-
bined with state-space caching [GHP95]. Better heuristics can aid the effectiveness
of the caching, for example by focusing on states that form entry points of cycles in
the graph [BLPO3]. With proper heuristics, the technique can even be used without
its dependency on prs [BLP03; MWO09] (accomplishing completeness by guaranteeing
progress).

Alternatively, to avoid state revisits, the visited states can also be off-loaded to the
much slower hard disk [SD98]. By heuristically selecting states that are encountered
less often, the performance penalty can be minimized [Pen+02].

Both techniques can also be combined [HWO07].



1.4.3.2 Symbolic Techniques

With their ability to exponentially reduce the size of the state space by expressing large
sets of states using simple mathematical formulae, symbolic techniques greatly con-
tributed to solving the state-space explosion problem. However, they may also increase
the size of a state space exponentially if its structure is not combinatorial, so they must
viewed as an orthogonal approach to explicit-state model checking.

Binary Decision Diagrams. One way to mitigate the state-space explosion is to
symbolically represent subsets of the syntactic state space using (reduced and ordered)
binary decision diagrams (BDDs) [Bry86]. However, BDDs only efficiently support
set operations, and have horrible performance for adding single states, as the model
checking procedure as described above, demands. Therefore, the transition relation
also needs to be expressed symbolically [McM92|]. The downside is this somewhat
limits the input language of the model checker to reflect the relational nature of the
transitions. Moreover, some arithmetical operations, such as multiplication, are there-
fore more expensive. However, BDD-based symbolic model checkers [Bur+90|], such
as NuSMV [Cim+02] still enjoy huge successes due to their suitability for checking
highly-parallel systems, such as hardware.

Despite slow BDD updates, some explicit-state model checkers still employ BDDs
to compress the state space [[Gre96; |Vis96; HP99]. The model checker LTSMIN uses the
same approach, but mitigates the resulting runtime penalty by learning the partitioned
transition function in a piecemeal fashion [BPW10; BPW09].

Boolean satisfiability. The contribution of Davis and Putman [DP60]] in 1960 re-
sulted in a revolution in (Boolean) satisfiability solvers (SAT). Eventually these solvers
where used for model checking [Bie+99bj Bie+99a;; Bie+03; DKWOS]], by generating a
propositional formula that described executions of the system-under-verification up to a
bounded length k. The method was later greatly improved using an inductive on-the-fly
generation of the transition relation by Bradley [Brall].

For software systems, it is often infeasible to express the state transitions as a Boolean
formula because the use of large data variables, together with their arithmetic opera-
tions, are expensive to express using only Boolean connectives. For this purpose, re-
searchers have sought to solve the “satisfiability modulo theory” (SMT) problem [NOT06],
which is essentially the SAT problem extended with predicates from different, higher-
level theory. The theory can be either (fixed-sized) bit-vectors, natural numbers, real
numbers, etc. SMT solvers have successfully been used in the model checking proce-
dure [AMPO6|.




While the successes of bounded model checking quickly replaced BDD-based meth-
ods, the methods should be considered complementary, as there are problem instances
which can be solved efficiently with either BDDs or SAT, but not with both [GZ01].

1.4.3.3 Orthogonal Techniques

Some general state-space reduction methods can be applied, regardless of whether we
employ symbolic or explicit techniques.

CounterExample-Guided Abstraction Refinement. CounterExample-Guided Ab-
straction Refinement (CEGAR) [Cla+00] uses over-approximating abstractions to mit-
igate the state-space explosion. Upon detection of a counterexample, its feasibility is
checked in the original system. When the counterexample is infeasible, the abstrac-
tion is refined (possibly locally) and the checking process is reiterated. This technique
is more naturally expressed using symbolic techniques [[Cla+00; (CGS04; (Cla+02[], but
can also be used for explicit and hybrid systems [[BL13b; |Cla+03|.

Partial-order and confluence reduction. Independence and commutativity between
transitions in concurrent systems can be exploited with partial-order reduction (POR)
[Ove81};Val88; [Val89; [KP88a; |God90]. Exhaustive verification needs to consider only
a subset of all possible concurrent interleavings, without losing the global behavior of
interest to the verified property. In practice, the state space is pruned by considering a
sufficient subset of successors in each state.

A arelated approach is confluence reduction [BP02]], which achieves the same goal.
For probabilistic systems with branching-time logics [TSP11]], confluence reduction
was shown to deliver reductions at least as good as POR.

Partial orders have been shown to be crucial for feasible solutions to the model
checking problem of systems with relaxed-memory semantics [AKT13].

Symmetry reduction. Symmetry reduction [NIPD96; (Cla+96; [ES96] prunes in-
terleaving behavior of identical system components by using an equivalence relation
over state descriptors induced by permutation groups (of the identical components).
Partial-order reduction can be considered orthogonal to symmetry reduction, because
both approaches leverage reductions from different aspects of the system [EJP97]. Wahl
etal. [EWO05]] developed dynamic symmetry reduction to extend the approach to systems
with imperfect symmetries.



1.4.3.4 Language-Specific Techniques

Some approaches to combat state explosion have been developed for specific specifica-
tion languages. For example, McMillan [McM93|| defined an unfolding technique for
Petri nets, a formalism ideally suitable for specifying parallel systems, which avoids the
exponential explosion caused by exhaustive exploration. The technique can be adapted
for use in other formalisms, such as synchronous products of labeled transitions sys-
tems, although its details may depend on the formalism to which it is applied [EHOS].
Other examples involve the symbolic relation induced by the time-abstracting constraint
systems for finite representations of timed automata (TA) [Dal+11].

1.4.3.5 Techniques using Parallelism

Finally, we can also choose to increase the amount of hardware resources dedicated to
solving a model checking problem. The availability of large- scale computing clusters
makes it possible to distribute the problem over individual machines and communicate
results via a network (LAN or WAN). The machines themselves can be scaled to contain
multiple processors or even multiple processor cores on a single chip.

Distributed systems. Distributed systems have a long history of being used for
model checking. The benefit of this approach is that the available memory increases
linearly with the number of machines used. A difficulty is however to split the model
checking problem in such a way, so that the communication among those machines is
minimized.

Symbolic approaches have been distributed by Grumberg at al by splitting BDDs
using a so-called window function [BD+00]. The added benefit was that in some cases
the BDDs tend to reduce in size due to their partitioning, as other experiments seem to
indicate [GHSO1]]. Other works investigate the distribution of timed automata, which
express systems with real-time behavior [Beh05; BHV00].

Explicit-state model checking has been distributed with the work on spin [LS99],
MURQ [SD97;|Bin+10], CADP [Gar+07; GMS 12|, Groove [BKR10[] and D1VINE [Bar+10;
Bar+06]. Other (language-independent) distributed approaches that use state compres-
sion techniques to reduce network traffic [Blo+08a]. The size of the distributed state
space can be further reduced using distributed bisimulation reduction algorithms [BO03};
BOO035].

Multi-core and multi-processor systems. More recently, multi-core and multi-
processor systems are becoming more prevalent, as discussed in These
systems share the main memory subsystem between all the available processing cores.



Communication is therefore not as expensive as in the distributed case, but also less
transparent because the memory is presented as a single virtual address space to the user-
space programs (see[Section 1.6). Model checkers can benefit from the performance of
multi-core processors [BBR09b; HBO7}; [Hol08; IB02; [BROS]|

The current thesis focuses exclusively on methods to speedup the model checking
procedure for multi-core and multi-processor systems. We do however also con-
sider combinations with other techniques that deal with state-space explosion, such
as partial-order reduction as discussed in section|Section 1.5} [Section 1.6|explains
the intricacies of parallelism.

1.5 Scalable Multi-Core Model Checking

1.5.1 Problem Statement

As mentioned above, the model checking procedure is severely limited by the (exponen-
tial) state-space explosion. At the same time, the method does not exploit the increasing
amount of parallelism of modern multi-core processors. To benefit from the exponen-
tial performance increase of each next generation of processors, model checkers need
to be parallelized.

1.5.2 Limitations and Existing Contributions

Prior to the commencement of the research project that led to the current thesis, a few
researchers had already recognized the importance of this approach and proposed par-
allel solutions for model checking on shared-memory machines.

Brim, Barnat and Rockai [BBRO9b] implemented a parallel model checker DIVINE
for multi-processor systems. Their results were promising, but unfortunately the run-
time of some of their parallel algorithms could become quadratic in the worst case, while
their sequential counterparts remain strictly linear-time. Furthermore, the algorithms
exhibit limited scalability on multi-core systems.

The spiNn model checker also saw several attempts to revise its algorithms for multi-
core machines [HBO7; HolOS8]]. A wise choice was made here to maintain as much back-
ward compatibility with earlier implemented algorithms. Unfortunately, little speedup
was obtained. Inggs and Barringer [IBO2] present a way to parallelize reachability us-
ing an imprecise state store. The work resulted in reasonable speedups on older SGI
machines, but the method is inherently unsuitable to support liveness algorithms like



1.5 Scalable Multi-Core Model Checking

owcTy, because the correctness of such algorithms depends strongly on precise state
counting arguments.

Specific solutions for shared memory machines with shared state store where not
investigated to satisfaction. Some researchers therefore were convinced that scalable
parallelization of model checking operations was limited to input with large data sizes
(state vectors), long transition delays (next-state computation) and high branching fac-
tors HolIO8]|. Others believed that the right algorithm/implementation has yet to
be invented [BROS].

Researchers agreed that parallel linear-time algorithms for checking LTL properties

remained an important open problem [HB07; BBR10b].

1.5.3 Research Questions

In the first place, we want to realize efficient procedures for parallel model checking
on multi-core machines. The ideal to strive for is obviously a speedup that equals the
number of cores used. If this a not attainable, at the least a linear speedup would pro-
vide some indication that the algorithm will also scale beyond the number of currently
available cores. We therefore ask the following research question:

Main research question

Can the model checking procedure scale, linearly or ideally, on modern multi-
core machines?

We interpret model checking in the broad sense and aim at supporting different spec-
ification languages and properties. Some specification languages, like timed automata,
add symbolic properties to the state space and therefore require different algorithms.
Furthermore, the verification of liveness properties requires different algorithms than
the safety properties because these reason on paths in the state space. All these different
algorithms need to be parallelized individually.

The inherent difficulty of parallelism demands that we require some proof of correct-
ness for new algorithms and/or data structures. At the very least these proofs should be
on the higher algorithmic level, where we can easily reason about mathematical prop-
erties. For data structures, a limited implementation with some abstraction could be
model checked to provide some confidence in their correctness. We do not require that
the implementation themselves is completely verified, as this is often infeasible. So
concretely, we need to demonstrate correctness:
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Introduction

Subquestion 1

Are our proposed methods for multi-core model checking provably correct?

Finally, a parallel model checker that efficiently uses all the available processors/-
cores is a great tool for dealing with state-space explosion considering the predicted
technological advancements according to Moore’s Law (see [Section 1.2). However,
without other techniques, such as partial-order reduction, on-the-fly model checking,
state compression, etc, it can hardly compete with other sequential tools. Therefore, we
should keep an eye on compatibility with these methods:

Subquestion 2

Are our parallel model checking procedures compatible with other existing
approaches to tackle the state-space explosion problem?

1.5.4 Approach

Different model checking problems have different complexities. On the first axis comes
the input specification, which might add complexity to the exhaustive exploration of the
state space. For example, to obtain a finite state space for timed automata a symbolic
abstraction is needed, which complicates the comparison and storage of states [BHV00].
The following enumeration shows different formalisms in their increasing complexity:

1. explicit-state formalisms (spIN’s PROMELA [|[Hola], DIVINE’s DVE [Bar+10]], MCRL2’s
process algebra [Gro+08], etc).

2. timed automata (UPPAAL’S timed automata),

3. hybrid systems [Man+13], and

4. probabilistic systems (PRISM’s probabilistic TAs and Scoop’s MAPA [TimIT]).
Another axis of increased complexity we find in the property specification:

1. Reachability or safety properties,

2. linear temporal logics (LTL) and branching-time logics (CTL), and

3. the modal p-calculus.
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It is not feasible to try to parallelize all of the above problems at once. We can
however start with finding a solution for the explicit-state exhaustive exploration prob-
lem, or reachability, which already solves many safety properties, such as deadlocks,
for explicit-state systems. In fact, when no efficient solution can be found for paral-
lel reachability, it is also unlikely that we can find efficient solutions for LTL checking
or the checking of timed automata. Therefore, it is crucial that we initially focus on
scalable parallel explicit-state reachability.

From there on, we can focus on more complex problems on both axes, such as LTL
checking and the checking of timed automata. Linear-time solutions for parallel LTL
checking are still an important open problem [HBO7; BBR10b], and therefore would
logically be the next goal on the list. From its advantages compared to CTL as outlined
in [VarOl1] (see also [Section T.4), LTL also seems the logical first choice. Later, we
could also investigate CTL and CTL* logics starting from the algorithms in [Fis+01].

Once the explicit-state case has been solved, the same methodologies can be applied
for the parallel checking of timed automata [Li09]], and possibly the more general hy-
brid automata. While distributed versions of uppaaL exist [BehO5], their scalability was
only established on decade-old machines, and likely is not preserved on modern multi-
core machines (an implementation is also not available to check this). Furthermore, the
UPPAAL tool is limited to checking a small subset of CTL. Moreover, the problem com-
bining LTL checking with rigorous time-abstractions is still an open problem [TYBOS5].

Completely symbolic model checking can be considered last. Because SAT-based
techniques are NP-complete, many (heuristic) approaches are equally valid for different
sets of input problems, making a portfolio-solution a natural fit [Xu+11]], as we will
discuss in the following section. Nonetheless, it was recently shown that clause learning
can be shared among the solvers [WH13a; [ WH13b].

BDD-based structures can be parallelized by distributing them using window func-
tions as discussed at the end of the previous section. For multi-core machines however
it could also be useful to parallelize the individual operations on the BDD structure.
These operations traverse a large directed, acyclic graph (DAG). Therefore, the problem
of parallelizing these BDD operations is similar to that of parallelizing the exhaustive
(explicit) state-space search, though with many more constraints [Bry86]. Hence we
can expect that a successful parallelization of BDD-based model checking depends on
the success of parallelizing the explicit approach.

Due to the different nature of the symbolic approaches to model checking, the par-
allelization of these techniques is likely orthogonal to the parallelization of the explicit-
state techniques, meaning that their solutions will have little in common and can be
considered independently [DLP13].

One requirement for the parallel checking methods is compatibility with the other
state-space reduction methods discussed in the previous section. Without e.g. partial-




order reduction the gains of parallel model checking would diminish greatly. Also state
compression and on-the-fly verification are important capabilities that should be pre-
served. These considerations should therefore be taken into account from the start.

[Table 1.1| shows an overview of the large research area that we discussed in the
order suggested in the current subsection. The first column shows the main formalisms,
the second column the different kinds of properties that we discussed, and the first row
the different approaches and some useful reduction techniques that can be applied for an
approach. In the introduction of every thesis part, we will discuss which open questions
are solved in that part based on In the conclusions, we provide an overview
of the solved open questions (see [Chapter 12). To wit: explicit-state reachability and
LTL checking, for explicit and timed specifications, combined with most state-space
reduction methods (areas circled in the table).

Table 1.1: Open questions in the area of multi-core model checking.
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1.6 The Challenges of Parallel Computing

The irony of history is that many research on shared-memory parallel programming
and architectures was already performed in the 80’s but discontinued due to rapid ad-
vancement of efficient sequential architectures. Market-driven development of sequen-
tial chips mainly by Intel and AMD, pushed parallel architectures in the background
and also off many research agendas. Therefore, interesting background materials can
be already decades old (translating to centuries in the field of computer science), but
are becoming more relevant again, e.g. [MCS91].

Recalling this history also gives great insight into the status quo of current parallel
shared-memory architectures. While in the past these systems often had large bus inter-
connects, with often pieces of local memory available to each processor, we encounter
nowadays almost exclusively cache-coherent architectures that provide a single consis-
tent view of memory for each core, pushing the communication in the background by
means of a cache coherence protocol. These concepts are discussed in the following
sections.

The current situation can be explained by the availability and vast usage of fast se-
quential chips and the prevalence of sequential algorithms for these chips. In the old
situation, the burden of parallel programming was entirely on the programmer, but its
functioning was transparent in the form of explicit communication operations. This set-
ting was much closer to the message-passing approaches for distributed programming.
Nowadays, the processor manufacturer has taken on part of the burden of parallel pro-
gramming by providing this single view of memory. Programming these systems is less
involved but also much less transparent.

1.6.1 Parallelism is Inherently Complex

Parallelism is known for its inherent complexity.

The theory. Complexity theory, in the first place, suggests that “feasible” prob-
lems for sequential machines lie within the polynomial-time complexity bound (P), as
a higher-than polynomial upper bound on computation time seems unreasonable given
that computation power grows exponentially [[Cob64; DC80|]. A similar argument can
be made for the complexity of a parallel algorithm using a polynomial amount of hard-
ware, i.e. circuit size. This suggests that the efficiently parallelizable problems are a
subset of P, since polynomial hardware running for polynomial amount of time can be
simulated by a polynomial-time algorithm [DC80, Sec. 5].

Nick Pippinger [Pip81] came up with a characterization of the circuit size which




turned out to be invariant for different circuit layouts. Since the width of the circuit is
closely related to the amount of parallelism, it is believed that Nick’s class (NC), a term
coined by Cook [[Coo79]], describes those problems that are efficiently parallelizable. It
is widely believed that P # NC. In other words, some problems exist that are inherently
sequential (these should necessarily include all the P-complete problems).

In practice, the fact that a problem is in NC means that it may use a polynomial
number of processors solving the problem in poly-logarithmic time. Several points of
critique can be addressed with regard to such a theoretical model [Varl1]. First of all, it
is infeasible to scale the number of processors as the model suggests. Second, the def-
inition of a parallel computer in this model is often assumed to be a Concurrent Read-
/Concurrent Write (CRCW) parallel random-access memory (PRAM) machine, which
can perform communication in a single cycle and access all memory equally cheaply.
The practice is far from this model as we will see next. Worse yet, the practice is actu-
ally evolving such that communication becomes more expensive and memory latencies
less constant. Therefore, the current thesis does not emphasize the theoretical aspect
of parallel computation. Although sometimes, we draw from the theory to understand
were the difficult problems may lie, e.g. in|Part III} we discuss the inherent sequential
nature of depth-first search (DFs).

Memory hierarchy, latency and bandwidth. A consequence of Moore’s law (see
is that processor clock frequencies increase faster than memory latency.
This has over time led to very steep memory hierarchies in computers, prompting pro-
cessor manufacturers to include several layers of fast on-chip caches, referred to as L1,
L2 and L3, to make up for a slower main memory (see [Figure 1.3). The L2 and L3
caches are often shared among multiple cores in multi-core chips.

Register
L1/L2 Cache

L3 Cache
Main memory

Lower latency
More memory

Solid-State Disk
Hard disk

Figure 1.3: Memory hierarchies balance low latency and large memory.



The roofline model [WWPO09} |Asa+09] tries to predict an algorithm’s parallel ef-
ficiency by modeling only its memory bandwidth usage and number of operations per
second. The ratio of bandwidth and computation, or algorithmic intensity, is the main
measure in this theory. When the algorithm itself performs fewer computations per
byte of memory it loads than the processor can support, the algorithm will be limited
by the algorithmic intensity that the processor can deliver. This performance model
offers a way of thinking about the efficiency of high-throughput and high-performance
algorithms. For example, it suggests that the memory footprint of a data-intensive algo-
rithm is probably the performance bottleneck on modern machines. In we use
this heuristic for the design of scalable concurrent data structures.

NUMA architectures. Whereas multi-core processors communicate via their shared
caches as discussed below, multi-processor systems communicate via the memory bus
as illustrates. To reduce memory latency and reduce traffic on the shared
memory buses, multi-processor systems often opt for processor local memory banks
(see [Figure 1.4). These so-called non-uniform memory architectures (NUMA) result
in less uniformity in the memory access times. Since programmatically all memory is
presented as one uniform global range, the slowdown of remotely allocated memory is
not transparent to the programmer. Therefore, modern operating systems offer NUMA
libraries that allow to control the allocation across the different memory banks.

Throughout the current thesis, little mention is made of these implementation de-
tails, in order to make room for other results. We also did not find the need to optimize
shared data structures using the NUMA library, as the speedups obtained in our basic
algorithms (reachability) were already close to optimal.
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Figure 1.4: Non-Uniform Memory Architectures
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Cache coherence. On the practical level of the implementation, cache coherence
is another source of problems. Modern processors have taken the design approach to
make parallel programming resemble the sequential world as much as possible. To this
extent, the available system memory is presented uniformly as one addressable range

Algorithm 1.1 Counting to a billion (sequentially)

#define B (1024%1024+x1024)

int main (void) {
int result = 0;
for (inti=0;i< B;i++)
result++;
return result;

Algorithm 1.2 Counting to a billion (in parallel)

#define P 16

static void count (void xarg) {

int xcounter = (int ) arg;

for (inti=0;i< B/P;i++) ( *counter )++;
}
int main (void) {

pthread_t thread[P];

int counters[P] = {0};

for (inti=0;i<P;i++)

pthread_create (&thread[i], NULL, count, &counters|i]);

int result = 0;

for (inti=0;i<P;i++) {
pthread_join (thread[i], NULL);
result += counters[i];

}

return result;




of bytes, whereas in fact memory is often moved to the core-local or CPU-local L1, L.2
or L3 caches. The user cannot control directly what the contents of the cache are. We
illustrate the difficulties that this design causes with an example.

shows a simple program that solves the problem of counting to a
billion. The same problem is solved in parallel using prHrEADS in[Algorithm 1.2] The
main thread launches 16 worker threads at and wait for their completion at

Meanwhile, the worker threads each use their own counter (declared at[Line 10)
to do a part (1B/16) of the counting at[Line 5]

When executing |[Algorithm I.1| and [Algorithm 1.2] on the same machine with 16
cores, we obtain a runtime of 27 seconds for the first, and 32 seconds for the second
implementation. Our parallelization caused a slowdown!

This slowdown is caused by the cache coherence protocol, which ensures that all
local processor caches reflect the same global state of memory. However, the smallest
unit on which is operates is a cache line, which consist of 64 bytes or more. It turns
out that our array counters lies on the same cache line, which is now sent around to all
processor cores for each count operation. This problem is known as false sharing.

Weak memory models. In order to improve processor speeds, and adhere to Moore’s
corollary that clock frequencies double every few years, manufacturers in the past had
to employ several tricks. At the basis of their methods is a process called pipelining,
where individual instructions are pushed on a processing queue inside the processor
and are completed in a step-wise fashion. With the increasing clock frequencies, the
amount of computation became limited by the depth of the circuit (the distance that the
electronic signals need to travel). Therefore, the operation performed at each step of
the pipeline is small and many pipeline stages are needed to assemble the final result,
sometimes up to twenty-four stages.

This means that the first instruction takes up to twenty-four cycles for completion,
but the subsequent instructions ‘flow’ at the clock frequency. Unless an instruction is
halted due to a slow reference to memory (a cache miss), or a branching instruction
whose result cannot be predicted. To remedy this, many transistors on the processor are
dedicated to predict branches and govern the cache contents.

However, in the course of time these solutions still turned out to be insufficient to
sustain the processor core with useful work. Therefore, processors resort to out-of-
order executions for decades already. This technique allows the slower instructions to
be reordered behind the faster instructions, if they are independent (operate on different
data). For example, a memory load may be reordered behind a memory store or another
load. The weaker the memory model, the more such reorderings are allowed.

Out-of-order executions are invisible to sequential programs, where sequential con-




sistency is maintained, i.e. all instructions appear to be executed in the order in which
they are issued, informally speaking. However, for parallel programs, these out-of-
order executions of remote cores become visible. Thus the methods that were used
for a long time to speedup sequential computation, actually hinder parallel computa-
tion. The result is an often counter-intuitive programming model, which makes mem-
ory contents appear inconsistently across different CPUs, even though cache coherency
presents memory as a single continuous range.

Embarrassing parallelism. The inherent difficulties of parallel computing has led
many to consider embarrassingly parallel algorithms [Varl 1;[HIGOS; [HIG11; Xu+11].
Embarrassingly parallel solutions use little or no synchronization and thereby are almost
trivially correct (often because several instances of the same sequential algorithm are
run independently in random fashion).

Vardi [[Varl 1] discusses the difficulty of LTL satisfiability checking. All the different
techniques for this problem have their own merits in the sense that they effectively solve
their own subset of problems. For this reason, portfolio-based approaches, where many
different SAT solvers are unleashed on the same problem in parallel, but completely in-
dependently, have shown promising results [Xu+11]. He concludes with the suggestion
that embarrassing parallelism probably offers the best parallelization method, given the
few impressive results from five decades of research on parallelism have delivered.

Embarrassing parallelism in model checking can aid help to locate bugs rapidly, but
cannot speedup complete verification as all worker threads would traverse the whole
state space independently [HIGO8; [HIG11]]. Recently, techniques have been proposed
that aim to remedy this shortcoming by using informed search with limited communi-
cation to prevent many redundant computations [Wijl1].

1.7 Contributions

The current thesis contains contributions in 3 areas in the field of model checking. These
correspond to the different parts of the thesis. After discussing these different contri-
butions, we summarize their impact on the scientific community up until the time of
writing of the current thesis (January, 2014).

1.7.1 Scalable Reachability with State Compression

The first main contribution, of scalable multi-core reachability described in[Chapter 2]
lies at the basis of all other work contained in the current thesis. Contrary to the belief
of some experts in the field, we showed how reachability can scale almost ideally on



modern multi-core hardware. We achieved this by exploiting the hardware’s strengths
through the use of a carefully designed shared concurrent hash table with low mem-
ory footprint (as opposed to using distributed algorithms). This design provides both
more flexible load balancing and more flexibility in choosing the search order of the
reachability algorithm, thereby aiding on-the-fly model checking.

The second main contribution is the combination of parallel reachability with effi-
cient and scalable state compression. The core of this work is the replacement of the
concurrent hash table with the concurrent tree data structure that is developed in [Chap
Because this structure internally uses the concurrent hash table of its
scalability is equally good. Furthermore, by incrementally updating the tree, we obtain
similar, often better, runtimes than with plain (non-compressed) hash table storage.

The obtained compression ratio depends greatly on the structure of the state space,
but because it is often highly combinatorial in model checking, it is close to the optimal
of 8 bytes per state regardless of the original state size, which could be thousands of
bytes. (The fixed quantity depends on hardware characteristics that guide the imple-
mentation of the tree.) Extensive experiments indeed demonstrate that in many cases
the optimal compression is obtained.

We further reduce the compressed sizes to almost 4 bytes by developing a concurrent
compact hash table [Cle84] in[Chapter 4] The compact table can be used in many other
applications, e.g. in BDDs, and therefore represents a contribution in its own right.
Moreover, its dynamic region-based locking strategy is a novel approach which delivers
fine-grained, yet multi-object, mutual exclusion. In[Chapter T1] the combination of the
tree database with compact hash table is discussed and experiments are presented that
confirm the expected compression.

1.7.2 Scalable, LTL Model Checking in Linear Time

Our work on multi-core nested depth-first search algorithms (Mc-NDFs) yielded the first
parallel LTL model checking algorithm which can be linear in the size of the graph, but it
also introduced a new opportunistic way to parallelize similar algorithms — many impor-
tant graph algorithms are based on prs. The impact of this research (see[Section 1.7.4)
indeed shows that other researchers are beginning to apply similar methods.
In[Chapter 3] we introduce the first version of Mc-NDFs: A parallel, prs-based algo-
rithm that takes as venture point the embarrassingly parallel approach discussed in the
previous section, but adds limited communication to improve scalability. Though it only
scales for a small set of inputs, it showed the potential of the approach: good on-the-fly
performance and little overhead. The contribution of is a detailed evaluation
of the Mc-nDrFs algorithm and a comparison against other algorithms: owcty by Barnat
et al. [CPO3|| and ENDFs by Evangelista et al. [EPY11]. Because the approach of the




ENDFs algorithm is similar but orthogonal [Laa+11; [EPY11]], the paper also presents
a trivial combination of the two, which shows that the algorithms indeed complement
each other in practice and together consistently perform better than the owcty algo-
rithm. Finally, proposes an integrated combination of the algorithms from
[EPY11]] and [Laa+11]]. This algorithm uses less memory than its prequels (also less
than owcTy), is less complicated, and performs at least equally well.

The combination of partial-order reduction and the parallel model checking of live-
ness properties forms a difficult problem because an extra condition (to wit: the ig-
noring proviso [EP10]]) needs to be implemented that reasons over cycles in the state-
space graph. Solutions have been proposed, but all of them severely impede the POR
performance by overestimating the proviso: [BBR10aj [HolO8; HBO7; INGO02; Bri+05};
BBCO05a; [Kur+98; BLLL0O9; [LS99]. We solve this completely for an important subset
of LTL, namely livelocks, by showing that in this particular case, the proviso can be
weakened. In [Chapter 8] we propose a parallel version of the DFs, algorithm [FS09]
for checking livelocks, and provide a proof of correctness. Experiments show excellent
scalability and POR for this algorithm on a 48-core machine.

Last, we provide additional experiments in The implementation of a
prROMELA frontend for LTSmiN allows the use of all the proposed techniques from[PartT]|
and on models created for the popular spiNn model checker. The results solid-
ify our empirical evaluation of said algorithms by extending the benchmark set with
many freely available PROMELA models. Indeed, the new experiments confirm again
that our multi-core model checking algorithms are scalable up to 48-cores (previously
16), on-the-fly, and use very little memory even compared to spIN’s COLLAPSE com-
pression [Hol97b].

1.7.3 Scalable Model Checking of Timed Systems

presents the first scalable multi-core reachability algorithms for timed au-
tomata. Our algorithm supports various abstraction and extrapolation methods in order
to obtain a finite state space. This includes the coarsest abstraction, called inclusion
abstraction or subsumption. Experiments show speedups of up to 60 on a 48-core ma-
chine, compared to the popular uppaAL model checker. The implementation in LTSmiN
is also compatible with state compression, thus complementing the state-caching tech-
nique that is available in the uppaaL model checker — both methods show comparable
reductions of memory usage, however as of yet, neither implements both techniques
simultaneously. We further investigate the influence of search orders on the size of the
abstracted state spaces, confirming the observations in [BHVO0O0], but also demonstrat-
ing that parallel search orders can reduce the size of the state space.

[Chapter T0|presents the first algorithm for LTL model checking of timed automata.



Because the subsumption abstraction introduces a simulation relation on states, cycles
representing infinite traces can become spirals, as the chapter demonstrates. There-
fore, the combination of subsumption with LTL model checking was hitherto an open
problem [TYBO5]. Moreover, we also give a parallel algorithm based on cNDFs, but
extended with subsumption. Experimental results show promising reductions from the
abstraction, and reasonable scalability on a 48-core machine. The implementation in
LTSwmin is the first available timed model checker that supports full LTL and the latest
abstraction and extrapolation techniques.

1.74 Impact of the Contributions

Apart from being the basis of the further research presented in the current thesis, the
shared hash table approach has inspired various other researches into the parallelization
of algorithms from diverse fields: Since recently, the model checker spin also imple-
ments our hash table implementation [Hol12]]. Lowe used the hash table implementa-
tion to improve the scalability of his concurrent depth-first search algorithms [Low 14].
Sulewski [SEK11; Sull2]] uses the hash table design for host- based (on the CPU) du-
plicate detection to solve planning and other problems on GPGPUs. Other GPU-based
state-space exploration techniques [WB14]] also employ our hash table, using a warp-
the-line probing sequence instead of the original walk-the-line technique (see
fter 2). Others are still exploring its effectiveness on GPUs [Neel4]]. Multi-Core BDDs
were realized using an extension on our hash table design [DLP13]]. And finally, D1-
VINE at least planned to implement the same shared hash table approach as indicated
in [Bar+10], [BB11l Sec. 2.2.2], and [Bar10l Sec. 2.1.3].

Moreover, tree compression was adopted in the DIVINE model checker as of version
3.1 alpha [Hav13]]. The compression is not yet turned on by default, likely because its
lack of incremental updates does incur a runtime penalty for explicit-state inputs such
as DVE models [Stil3]. Since the runtimes with (incremental) tree compression are
comparable to those with a plain hash table, the technique has become the default in the
LTSmin model checker.

The intricacies of our multi-core nested depth-first search algorithms and their im-
plementation inspired Wan Fokkink, Pieter Hijma and Stefan Vijzelaar to create a stu-
dent assignment about them [FHV13|. The students are asked to implement the algo-
rithm and encouraged to find improvements to the algorithm and the implementation.
Because details of the correctness proof are more intricate than they might seem, this
reportedly often leads to incorrect derivative algorithms (and hopefully to equally many
learning moments). Their efforts led to the discovery of a bug in our parallel algorithm
with extensions. (We did not come up with a correctness proof for this extended algo-
rithm, only for the basic variant.) This bug has been corrected as described in[Chapter 3]




Our work on multi-core LTL model checking also inspired others to employ similar
techniques, i.e. starting multiple depth-first searches simultaneously with late informa-
tion sharing. For the PAT model checker, several of such algorithms are in develop-
ment [Dat13; XLHS13; LSD09b||. Next to similar nested depth-first search algorithms,
they also use Tarjan’s strongly connected component (SCC) algorithm [Tar72], for find-
ing (fair) accepting cycles [GV04] in parallel. Gavin Lowe [Low14] developed several
related concurrent depth-first search based algorithms for identifying SCCs, accepting
cycles, and normal cycles in a graph. These algorithms avoid unnecessary work com-
pletely at the cost of more synchronization: Searches may block on other searches, but
instead of waiting new searches are initiated. As a consequence, more searches can be
launched than the available processor cores. Therefore, these are scheduled in a way
that is similar to that in fine-grained task-based parallelism [Blu+95; |Ayg+09]. Finally,
our use of depth-first like search orders was also taken over by the GPU variant of the
D1VINE model checker to improve its on-the-fly behavior [Bar+11al, Sec. 5.1].

Our most recent work on timed systems has had little time to catch on in the commu-
nity as of yet. Nonetheless, it has been considered as a means to study the performance
of fault-tolerant systems [Fac13|] because of its capability to handle larger models than
UPPAAL using multiple cores and tree compression [Dal+12]. At the current author’s
native Formal Methods and Tools group at the University of Twente, several research
plans therefore also include the use of our timed algorithms to study both fault-tolerant
systems and biological systems [Sch+12].

1.8 Overview and Reading Guide

The current thesis contains 3 main parts. Because the chapters therein consist of pub-
lished conference papers that are largely left intact, the parts, as well as the chapters, can
be read independently. Additional introductions to the parts and chapters were added
to facilitate such random-access patterns by explaining their context within the thesis.

The first main part, [Overview and Reading Guide| deals mainly with the problem
of scaling reachability and combing it with efficient state compression and partial-order
reduction. For this reason, it contents focus on concurrent data structures and the prop-
erties of modern multi-core machines concerning their scalability. Algorithms are only
of secondary importance here.

The second main part,|Discussion and Conclusions| assumes the scalable data struc-
tures as a given and concerns itself mainly with algorithmic solutions. It presumes an
understanding of multi-core reachability as presented in [Part T} especially

The third main part, focuses on extending both reachability and LTL
model checking to the timed domain. For a detailed understanding of the proposed data




structures and algorithms, a reading of the preceding parts (or at least [Chapter 2] and
Chapter 7)) is in order.

There is a natural flow between the chapters in each part, as all of them are the result
of a single line of research that has been set out in Preceding chapters
often provide more general background information than is presented in the following
chapters. This is illustrated in[Figure T.5] where the arrows represent the suggested order
for reading the thesis and the dashed arrows represent (weak) dependencies between
chapters. We now discuss briefly the independent chapters explaining their relationship
and suggesting a reading order.

is based on the paper “Boosting Multi-Core Reachability Performance
with Shared Hash Tables”, which was published at FMCAD 2010 [LPW10al]. It de-
scribes the main approach we use for scalable multi-core reachability and the underly-
ing lockless data structure. All state-space searches in subsequent chapters are based on
the same method, and all data structures use similar lockless approaches. The chapter
can be read in isolation.

is based on the paper “Parallel Recursive State Compression for Free”,
which was published at SPIN 2011 [LPW 1 1c]. It describes a lockless tree data structure
and also discusses its connection to the reachability algorithm. It investigates worst-case
and best-case compression ratios analytically and also presents empirical evidence that
the average compression is very close to the best-case compression.

[Chapter 4]is based on the paper “A Parallel Compact Hash Table”, which was pub-
lished at MEMICS 2011 [VL12]. It presents a concurrent compact hash table, which
can store small fixed-size keys in succinct manner. It also presents a correctness proof
for the operations on the structure, but does not discuss its use in the context of model
checking in detail. The combination of compact hash table and tree compression is
discussed in[Section 4.4

[Chapter 3]is based on the paper “Multi-core Nested Depth-First Search”, which was
published at ATVA 2011 [Laa+11]. It presents our first successful attempt at parallel
LTL model checking through the use of the NDFs algorithm. This prs-based algorithm
does not lend itself directly for parallelization. We therefore come up with a novel
optimistic approach that allows threads to continue searching semi-independently and
randomly through the state space. Because it presents a rigorous proof of our parallel al-
gorithm, it could be a useful starting point for readers that are interested in parallelizing
other algorithms based on DFs.

is based on the paper “Variations on Multi-Core Nested Depth-First
Search”, which was published on invitation at PDMC 2011 [LP11]. It combines the
parallel NDFs algorithm, with another algorithm which appeared in the literature. Mul-
tiple experiments confirm the scalability of the combined algorithm, but also explore
the excellent on-the-fly behavior.




[Chapter 7]is based on the paper “Improved Multi-Core Nested Depth-First Search”,
which was published at ATVA 2012 [Eva+12]|. It presents an integrated combination
of the algorithms presented in the 2 preceding chapters. cNDFs uses less memory, and
is a simpler algorithm, leading to a simpler proof of correctness.

is based on the paper “Improved on-the-Fly Livelock Detection”, which
was published at NFM 2013 [LF13]]. It proposes to solve the combination of parallel
LTL model checking with partial-order reduction, by focusing on an important subset
of liveness properties: livelocks. A new parallel algorithm, called PDFs, is presented
based on the same techniques as presented in the 3 preceding chapters.

is based on the paper “Multi-core Reachability for Timed Automata”,
which was published at FORMATS 2012 [Dal+12]. It extends our multi-core reacha-
bility to the domain of timed automata. It could be a starting point for those interested
in the implementation of timed automata. The discussion of parallel, timed reachability
algorithms depends slightly on[Chapter 2]

[Chapter 10]is based on the paper “Multi-core Emptiness Checking of Timed Biichi
Automata Using Inclusion Abstraction”, which was published at CAV 2013 [Laa+13b].
It ports cNDFs to the timed setting. It also extends the cNDFs algorithm to use the coarse
subsumption abstraction, leading to a reduced state-space search. The chapter presents
the first realization of parallel LTL model checking for timed automate, but also solves
the previously open problem of using coarse abstractions for LTL model checking. The
details of the cNDFs algorithm under abstraction are probably only accessible to those
who have read [Chapter 7]

concludes the current thesis with additional experiments and a reflection on
our work.

[Chapter TT|details on the experiments done with an implementation of the PROMELA
language for the LTSmin model checker, as described in the paper “SpinS: Extending
LTSmin with Promela through SpinJa”, which was published at PDMC 2012 [BL13a].
The use of PROMELA provides us with an extensive set of real-world model checker
problems, which are used to compare scalability more directly against the state-of-the-
art spiN model checker on a 48-core machine. Moreover, the chapter demonstrates the
combination of our reachability algorithm with state compression and partial-order re-
duction, as presented in the paper “Guard-Based Partial-Order Reduction”, which was
published at SPIN 2013 [Laa+13a].

Finally, in we compare the results to related work, evaluate the extent
to which our goals have been met, and pose some open questions.

Several appendices add detailed proofs for algorithms in|Chapter 5|and [Chapter 10}
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Part I

Data Structures for
Multi-Core Reachability






Introduction

At the time that the current work on parallel model checking was initiated, it was widely
believed in the community that scalable parallelization of model checking operations
was limited to input with large data sizes (state vectors), long transition delays (next-
state computation) and high branching factors [HBO7; [HolO8|]. The high-throughput
nature of the procedure — many model checkers can generate millions of states per sec-
ond which can each consists of multiple kilobytes — was considered to be detrimental to
scalability. Still others believed that the right algorithms/implementation had yet to be
invented [BROS]. In the context of the project Multi-Core Model Checking, we there-
fore set out to parallelize reachability; the backbone of many more advanced model
checking techniques including LTL model checking [VW86; [Laa+11;|LP11].ex

Previous results [Bar+10 CP03; Hol08], were based on distributed algorithms which
use a hash function to statically assign states to the different worker threads. This so-
called static partitioning results in high communication overhead, as most states require
remote processing. Others used a shared hash table with a locking mechanism [BROSj
HolO8||. These approaches led to meager parallel scalability.

We believed that a shared hash table approach could exploit the strengths of shared-
memory multi-processors to a much higher degree, if carefully designed to reduce
contention and bandwidth use (the memory footprint). presents a lockless
hash table design which fulfills these requirements. Thus by focusing on the necessary,
instead of the possible — the literature is full of wait-free hash tables which are use-
ful to guarantee high responsiveness in real-time environments, but likely exhibit lim-
ited throughput due to the use of pointers [SS06] and even shared counters [GGHO5;
GGHO4|| — we obtain near-ideal scalability for model checking as demonstrated by a
large set of experiments on a 16-core machine. focuses on the comparison
with other model checkers, but our hash table design itself is also evaluated by compar-

ing it against other concurrent hash tables in[Chapter 4)).



The added benefit of the shared hash table approach, is that the open set of still-to-
be-explored states remains local, i.e. is not used for communicating states as with static
partitioning. A load balancer instead takes care of distributing load, when a worker’s
open set becomes empty. This reduces communication and allows for more flexibility
in the search algorithm, which can now also use a stack as open set implementation to
obtain both (pseudo) breadth-first and depth-first search orders.

While strict depth-first search (prFs) is off-limits, as workers influence each other’s
search order, this is also not needed for the safety properties considered in the current
part. And approximate DFs orders are enough to obtain good on-the-fly behavior in this
setting. (In theory DFs is likely not parallelizable, as discussed in detail in[Section 5.1}
nonetheless, we show in[Part1I1] that the depth-first property can still be used to realize
parallel LTL model checking in linear-time using a multi-core nested prs algorithm.)
Strict BFs order can also be obtained with little extra synchronization as shown in[Sec-]
where it is used to reduce state spaces under subsumption abstraction.

Great scalability is good to have, but without state compression the model checking
procedure will be severely limited by the available main memory. In order to pursue
our second research question (Section 1.5)), we investigated the parallelization of tree
compression, a method that can reduce large state descriptors down to two integers
(Section 3.4)). [Chapter 3|presents a new concurrent algorithm for this tree data structure.

We show with a theoreti-
cal model that the optimal com- Delta optimal
pressed state size is 2 integers, -
or 8 byte. Experiments show
that, for more than half of almost
300 benchmarks, the states are
indeed reduced to within 110%
of this optimal (see the figure
to the right, which summarizes
[Figure 3.13). This includes ex-
amples with large state descrip-
tors of around 250 integers.

Again to support a high throughput, our tree reuses the lockless hash table design
from[Chapter 2]by merging multiple tree tables together. To further reduce the memory
footprint, an incremental tree update algorithm is proposed. The surprising result is
that the runtimes and scalability are sometimes better than those obtained with the hash
table approach (see [Figure 3.15), hence the title ‘{Parallel Recursive State Compression|
for Freel”.

E<110%
W <120%
“<150%
H<200%
& <300%
©<400%

With the realization that the memory consumption of our tree table can be halved
using a compact hash table, we pursued a parallel version of the latter in[Chapter 4] In
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such a compact table, a technique named quotienting is used, which instead of storing
full keys, stores only a quotient of the key in the table. Its remainder is used to find a
hash location in the table, and the full key can thus be restored from its quotient and the
location where it is found using some additional administrative bits to resolve hash col-
lisions [Cle84;|GVO03]]. To parallelize compact hash tables, we propose a new dynamic
region-based locking scheme and show that the same scheme can also be used for other
hash table implementations, such as Knuth’s bidirectional linear probing [AK74]]. Ex-
periments confirm the scalability of this design.

In[Section 4.4] we discuss how the compact hash table is to be combined with tree
compression. By storing the tree roots inside the compact table, we indeed obtain com-
pressed state sizes that almost reach one integer. With an additional trick of growing
this table larger than the leaves table, we can also accommodate more than 4 billion
states. In other words, our compact tree compression is not limited by the 232 elements
addressable by an integer. Using an information-theoretic model, we show that the ob-
tained compression is indeed close to the lower bound achievable for encoding a stream
of states generated by a typical explicit model checker.

Moore’s law also held steadily during the execution of this PhD project, and thus
at a later stage we acquired access to a 48-core machine. The methods discussed in
this part of the thesis have proved to scale with this 3-fold increase in parallelism with
little modification: We merely had to adjust a few parameters in our load balancer im-
plementation to obtain near-ideal speedups on the new platform (while preserving the
performance on the older platforms). [Chapter 11| provides experiments using 48 cores
confirming this, but the full benchmark set with hundreds of examples can be inspected
online [Laa]. Consequently, our approach has inspired various other researchers to use

similar approaches for their parallel algorithms (see[Section 1.7.4).
The table below summarizes the goals that the current part meets (c.f.

in [Section 1.5.3): It solves multi-core reachability with good on-the-fly behavior by
allowing different search orders (depth-first orders often locate ‘deeper’ bugs faster, es-
pecially with multiple parallel worker threads). Excellent compression is supported by
means of the parallel tree structure and its compact version. Partial-order reduction for
reachability properties, i.e. deadlocks, can be computed locally [[Laa+13a] and hence

Reachability ‘



can be combined with the parallel methods as demonstrated in For other
safety properties, such as error actions and invariants, partial-order reduction requires
global conditions over the state-space, variants of which [BLLLO9] can be supported
by our parallel algorithms. In we discuss alternate solutions for the so-called
ignoring proviso.
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Abstract

The current chapter focuses on data structures for multi-core reachability, which
is a key component in model checking algorithms and other verification methods.
A cornerstone of an efficient solution is the storage of visited states. In related work,
static partitioning of the state space was combined with thread-local storage. This
solution leaves room for improvements. The current chapter presents a solution
with a shared state storage. It is based on a lockless hash table implementation
and scales better. The solution is specifically designed for the cache architecture of
modern CPUs. Because model checking algorithms impose loose requirements on
the hash table operations, their design can be streamlined substantially compared
to related work on lockless hash tables. The resulting speedups are analyzed and
compared with related tools. Our implementation outperforms two state-of-the-
art multi-core model checkers, spin (presented at FMCAD 2006) and D1VINE, by
a large margin, while placing fewer constraints on the load balancing and search
algorithms.

About this chapter: The current chapter is based on the paper “Boosting Multi-Core
Reachability Performance with Shared Hash Tables”, which was published at FM-
CAD 2010 [LPW10a]. An extended report on the work was published at Arxiv |[LPW10b]|
and is integrated in the current chapter.

Compared to the original publication in [LPW10a; |LPW10b], a few enhancements
have been made to the text presented here. First, we improved the memoized hashes
by using a separate hash function (hash,) for indexing and generating the memoized
hash itself in[Algorithm 2.3] This independence results in fewer collisions during the
filtering on memoized hashes. We found that a fuller table can be rather sensitive
to the independence of these hash functions. We also simplified the algorithm’s
representation by splitting the calculation of cache line indices in a separate algorithm



(Algorithm 2.4). Last, the experimental section was extended with the additional data
from the report version of the paper, and we included an additional benchmarks with
a static load balancer.

2.1 Introduction

Many verification problems are highly computational intensive tasks that can benefit
from extra speedups. Considering the recent hardware trends, these speedups can only
be delivered by exploiting the parallelism of the new multi-core CPUs.

Reachability, or full exploration of the state space, is a subtask of many verifica-
tion problems [[CPRO6; Bri06]. In model checking, reachability has in the past been
parallelized using distributed systems [Bri06]. With shared-memory systems, these
algorithms can benefit from the low communication costs as has been demonstrated
already [BBRO7]. In the current chapter, we show how the performance of state-of-the-
art multi-core model checkers, like spin [HBO7|] and DiVINE [BBRO7], can be greatly
improved using a carefully designed concurrent hash table as shared state storage.

Motivation. Holzmann and Bos$nacki used a shared hash table with fine-grained lock-
ing in combination with the stack-slicing algorithm in their multi-core extension of the
spIN model checker [HBO7; [HolO8]]. This shared storage enabled the parallelization of
many of the model checking algorithms in spin: safety properties, partial-order reduc-
tion and reachability. Barnat et al. implemented the same method in the D1VINE model
checker [BBRO7]. They chose to implement the classic method of static state-space
partitioning, as used in distributed model checking [BROS|. They found the static par-
titioning method to scale better on the basis of experiments. The authors also mention
that they were not able to develop a potentially better solution for shared state storage,
namely the use of a lockless hash table. Thus it remains unknown whether reachability,
based on shared state storage, can scale.

Using a shared state storage has further benefits. shows the different ar-
chitectures discussed thus far. Their differences are summarized in[Table 2.1l and have
been extensively discussed by Barnat et al. [BROS||. They also investigate a more general
architecture with a shared storage and arbitrary load-balancing strategy (not necessar-
ily stack-slicing). Such a solution is both simpler and more flexible, in the sense that it
allows for more freedom in the choice of the exploration algorithm, including (pseudo)
DEFS, which enables fast searches for deadlocks and error states [RK88]]. Holzmann al-
ready demonstrates this [HolO8]], but could not show desirable scalability of spin (as we
will demonstrate). The stack-slicing algorithm [HolO8||, is a specific case of load balanc-
ing that requires DFS. In fact, any well-investigated load-balancing solution [[San97a]
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Figure 2.1: Different architectures for model checkers

Table 2.1: Differences between architectures

Arch. Sync. points | Pros/ Cons
Figure 2.1(a)|| Queue local (cache efficient) storage / static load bal-

ancing, high comm. costs, limited to BFS
Figure 2.1(b)|| Shared store, | low comm. costs / specific load balancing,

stack limited to (pseudo) DFS
Shared store | Shared store, | low comm. costs, flexible load balancing,
(queue) flexible exploration algorithm / scalability?

can be used and tuned to the specific environment, for example, to support heteroge-
neous systems or BFS exploration. Inggs and Barringer use a lossy shared hash table
[IBO2[], resulting in reasonable speedups at the cost of precision (states can potentially
be revisited), but give little details on the implementation.

Contribution. We present a data structure for efficient concurrent storage of states.
This enables scaling parallel implementations of reachability for many desirable explo-
ration algorithms. The precise needs which parallel model checking algorithms im-




pose on shared state storage are evaluated and a fitting solution is proposed given the
identified requirements. Experiments show that our implementation of the shared stor-
age scales significantly better than an implementation using static partitioning, but also
beats state-of-the-art model checkers. By analysis, we show that our design will scale
beyond current state-of-the-art multi-core processors. The experiments also contribute
to a better understanding of the performance of the latest versions of spin and DIVINE.

Overview. [Section 2.7|presents background on reachability, load balancing, hashing,
parallel algorithms and multi-core systems. [Section 2.3|presents the lockless hash table,
which we designed for shared state storage. But only after we evaluated the requirements
that fast parallel algorithms impose on such a shared storage. In the per-
formance is evaluated against that of D1VINE 2 [BBR09b] and spiN. A fair comparison
can be made between the three model checkers on the basis of a set of models from the
BEEM database which report the same number of states for both spin and D1VINE. We
end the current chapter by putting the results we obtained into context, and an outlook

on future work (Section 2.5)).

2.2 Preliminaries

Reachability in model checking. In model checking, a computational model of the
system under verification (hardware or software) is constructed, which is then used
to compute all possible states of the system. The exploration of all states can be done
symbolically, e.g., using binary decision diagrams (BDDs) to represent sets of states, or
by enumerating and explicitly storing all states. While symbolic methods are attractive
for a certain set of models, they are not a silver bullet: due to BDD explosion, sometimes
plain enumerative methods are faster. In the current chapter, we focus on enumerative,
or explicit-state, model checking.

Enumerative reachability analysis can be used to check for deadlocks and invariants
and also to store the whole state space and verify multiple properties of the system at
once. Reachability is an exhaustive search through the state space. The algorithm calls
for each state the next-state function to obtain its successors until no new states are
found (Algorithm 2.T). We use an open set Q, which can be implemented as a stack or
queue, depending on the preferred exploration order: depth- or breadth-first. The initial
state sg is obtained from the model and added to Q. In the loop starting on [Line [4 a
state is taken from Q, its successors are computed using the model and each
new successor state is put into Q again for later exploration. To determine which state
is new, a closed set V is used. V can be implemented with a hash table.



Algorithm 2.1 Reachability analysis
1: procedure reachability(sg)

2: 0 :={so}
3: V= {s0}
4: while Q # 0 do
5: s=5€Q
6: 0:=0\s
7: for all 7 € next_state(s) do
8: if + ZV then
9: V:=vu{r}
10: 0:=0U{r}
Possible ways to parallelize [Algorithm 2.1 have been discussed in the introduction.

A common denominator of all these approaches is that the strict BES or DFS order of the
sequential algorithm is sacrificed in favor of thread-local open sets (fewer contention
points). When using a shared state storage (in a general setup or with stack-slicing), a
thread-safe set V' is required, which will be discussed in the following section.

Load balancing. A naive parallelization of reachability can be realized as follows:
perform a depth-limited sequential BFS exploration and hand off the found states to
several threads that start executing [Algorithm 2.1|(T = {part of BFS exploration} and
V is shared). This is called static load balancing. For many models this will work due
to common ‘wide’ state spaces. However, models with synchronization points or strict
phase structure sometimes exhibit sandglass-shaped state spaces. Hence, threads run
out of work when they reach the convergent funnel at the same time. A well-known
problem that behaves like this is the Towers of Hanoi puzzle; when the smallest disk is
on top of the tower only one move is possible.

Sanders [San97al| describes dynamic load balancing in terms of a problem P, a work
operation and a split operation. Py is the initial problem. Sequential execution takes
Tieq = T (Proot) time units. A problem is (partly) solved when calling work(P,t), which
takes min(t, T (P)) units of time. For parallel reachability, work(P,t) is|Algorithm 2.1}
where ¢ has to be added as an extra input that limits the number of iterations of the
while loop on (and Poot = T = {s0}). When threads become idle, they can
poll others for work. The receiver will then split its own problem instance (split(P) =
{P1,P,},T(P)=T(P)+T(P,)) and send one of the results to the polling thread.




Parallel architectures. We consider multi-core x86 server and desktop systems. These
systems can process a large number of instructions per second, but have a relatively low
memory bandwidth. Multiple levels of cache are used to continuously feed the cores
with data, forming a steep memory hierarchy. Some of these caches are shared among
multiple cores (often L2) and others are local (L1), depending on the architecture of
the CPU and number of CPUs. The cache coherence protocol ensures that each core
in each CPU has a global view of the memory. It transfers blocks of memory to local
caches and synchronizes them if a local block is modified by other cores. Therefore, if
independent writes are performed on subsequent memory locations (on the same cache
line), a problem known as cache line sharing (false sharing) occurs, causing gratuitous

synchronization and overhead (see [Section 1.6.1|for an example).

The cache coherence protocol cannot be preempted. To efficiently program these
machines, few options are left. One way is to completely partition the input [BROS]], thus
ensuring per-core memory locality at the cost of increased inter-die communication.
An improvement of this approach is to pipeline the communication using ring buffers,
which allows prefetching (explicit or hardwired). This scheme was explored, e.g., by
Monagan and Pearce [MPQ9]. The last alternative is to minimize the memory working
set of the algorithm [PHOS|]. We define the memory working set as the number of
different memory locations that the algorithm updates in the time window that these
usually stay in local cache. A small working set minimizes coherence overhead.

The memory model of the CPU provides vital guarantees about the order in which it
commits reads (load instructions) and writes (store instructions) to memory. To improve
instruction level parallelism, the individual cores namely reorder and delay (indepen-
dent) loads and/or stores using store buffers (see [Section 1.6.1). Sequential programs
rely on sequential consistency ensuring a total order of both reads and writes (all pre-
vious memory operations are committed before the next is executed). In sequential op-
eration this reordering behavior is thus opaque to the programmer, but parallel threads
may observe the reordering from other threads. Some version of a memory model is
often associated with all CPUs that implement a certain instruction-set architecture. For
example, the popular x86 architecture observes fotal-store order (TSO), which guaran-
tees that writes are never reordered (but reads may be). Others provide weaker guaran-
tees (consult [Ber13] for an overview). Here, we are mainly interested in x86 [Int07],
which is similar TSO. Intel [IntO7]] describes that x86 allows reordering of loads after
stores, but no reordering of other combinations, roughly summarizing a complex spec-
ification. Some programming languages, especially platform-independent ones such as
Java [Gos+05]], provide their own memory model (c.f. [Gos+05} Sec. 17.4]).



Locks. Itis common to ensure mutual exclusion for a critical section of code by locks.
However, for resources with high contention, locks become infeasible. Lock prolifera-
tion improves on this by creating more locks on smaller resources. Region-based lock-
ing is an example of this, where a data structure is split into separately locked regions
based on memory locations. However, this method is still infeasible for computational
tasks with very high throughput. This is caused by the fact that the lock itself introduces
another synchronization point; and synchronization between processor cores takes time.

Lockless algorithms. For high-throughput systems, lock-free algorithms (without mu-
tual exclusion) are preferred. Lock-free algorithms guarantee system-wide progress,
i.e., always some thread can continue. If an algorithm does not strictly provide progress
guarantees (only statistically), but otherwise avoids explicit locks by the same tech-
niques as used in lock-free solutions, it is called lockless. Lockless algorithms often
have considerably simpler implementations, at no performance penalty. Last, wait-free
algorithms guarantee per-thread progress, i.e., all threads can continue.

Many modern CPUs implement a compare-and-swap (CAS) instruction which en-
sures atomic memory modification while at the same time preserving data consistency
if used in the correct manner. This can be done by reading the value from memory,
performing the desired computation on it and writing the result back using CAS
. If the latter returns true, the modification succeeded, if not, the computation
needs to be redone with the new value, or some other form of collision resolution should
be applied.

Algorithm 2.2 “Compare&Swap” specification

Pre: word # null

Post: (xwordy,y, = testval = xword,oq = newval)\
(xwordyye # testval = swordpes = *wordpre)/\
returns (xwordy,, = testval)

atomic bool CAS(int *word, int testval, int newval)

Lockless algorithms can achieve a high level of concurrency. However, an instruc-
tion like CAS easily costs 100-1000 instruction cycles depending on the CPU architec-
ture. Thus, abundant use defies its purpose.

Quantifying parallelism. Parallelism is usually quantified by normalizing the perfor-
mance gain with regard to a sequential run (speedup): S = Tyeq/Tpar. Linear speedups
grow proportional to the number of cores and indicate that an algorithm scales well.




Ideal speedup is achieved when S > N. For a fair comparison of scalability, it is im-
portant to use the fastest tool for Ty, or speedups will not be comparable, since better
optimized code is harder to scale (e.g., [HBO7]).

Hashing. A well-studied method for storing and retrieving data with amortized time
complexity O(1) is hashing [Lit80]. A hash function % is applied to the data, yielding
an index in an array of buckets that contain the data or a pointer to the data. Since
the domain of data values is usually unknown and much larger than the image of #,
hash collisions occur when h(D;) = h(D;), with D; # D,. Structurally, collisions can
be resolved either by inserting lists in the buckets (chaining) or by probing subsequent
buckets (open addressing). Algorithmically, there is a wealth of options to maintain the
“chains” and calculate subsequent buckets [Cor+09]]. The right choice depends entirely
on the requirements dictated by the algorithms that use the hash table.

2.3 A Lockless Hash Table

In principle, seems easy to parallelize; in practice it is difficult to do
this efficiently because of its memory intensive behavior, which becomes more obvious

when looking at the implementation of set V. In this section, we present an overview
of the options in hash table design. There is no silver bullet design and individual
design options should be chosen carefully, considering the requirements stipulated by
the use of the hash table. Therefore, we evaluate the demands that the parallel model
checking algorithms place on the state storage solution. We also mention additional
requirements stemming from the targeted hardware and software systems. Finally, we
present a specific hash table design.

2.3.1 Requirements on the State Storage

Our goal is to realize an efficient shared state storage for parallel model checking algo-
rithms. Traditional hash tables associate a piece of data to a unique key in the table. In
model checking, we only need to store and retrieve state vectors, therefore the key is the
state vector itself. Henceforth, we will simply refer to it as data. Our specific model
checker implementation introduces additional requirements, discussed later. First, we
list the definite requirements on the state storage:

e The storage needs only one operation: find-or-put. This operation inserts the state
vector if it is not found or yields a positive answer without side effects. We require
find-or-put to be concurrently executable to allow sharing the storage among the



different threads. Other operations are not necessary for reachability algorithms,
since the state space is growing monotonically. By exploiting this feature we can
simplify the algorithms, thus lowering the strain on memory, and avoiding cache
line sharing. Our choice is in sharp contrast to standard literature on concurrent
hash tables, which often favors a complete solution, which is optimized for more
general access patterns [PHO5; (CI1i07]].

o The storage should not require continual memory allocation, for the obvious rea-
sons that this behavior would increase the memory working set.

e The use of pointers on a per-state basis should be avoided. Pointers take a con-
siderable amount of memory when large state spaces are explored (more than
108 states are easily reachable with today’s model checkers), especially on 64-bit
machines. In addition, pointers increase the memory working set.

o The time efficiency of find-or-put should scale with the number of processes ex-
ecuting it in parallel. Ideally, the individual operations should — on average —
not be slowed down by other operations executing at the same time, thus ensuring
nearly linear speedup. Many hash table algorithms have a large memory working
set due to their probing behavior or reordering behavior upon insertions. They
suffer performance degradation in high throughput situations as is the case for us.

Specifically, we do not require the state storage to be resizable. The available mem-
ory on a system can safely be claimed for the table, because the largest part will be used
for it eventually anyway. In sequential operation and especially in the presence of a
delete operation (shrinking tables), one would consider resizing for the obvious reason
that it improves locality and thus cache hits. In a concurrent setting, however, these
cache hits have the opposite effect of causing the earlier described cache line sharing
among CPUs. We experimented with lockless and concurrent resizing mechanisms and
observed large decreases in performance.

Furthermore, the design of the LTSmin tool [BPW10|, which we extended with
multi-core reachability, also introduces some specific requirements:

e The storage data consists only of integer arrays or vectors of known and fixed
length. This is the encoding format for state vectors employed by our language
frontends.

e The storage is targeted at common x86 architectures, using only the available
(atomic) instructions.



While the compatibility with the x86 architecture allows for concrete analysis, the
applicability of our design is not limited to it. Lessons learned here are transferable to
other architectures with similar memory hierarchy and atomic operations.

2.3.2 Hash Table Design

We determined that a low memory working set is one of the key factors to achieve
maximum scalability. Also, we opt for simplicity whenever the requirements allow for
it. From experience we know that complexity of a solution arises automatically when
introducing concurrency. These considerations led us to the following design choices:

Open addressing, since the alternative chaining hash table design would in-
cur in-operation memory allocation or pre-allocation at different addresses, both
leading to a larger memory working set.

Walking-the-line is the name we gave to linear probing on a cache line, followed
by double hashing (also employed elsewhere [[C1i07; HSTOS8]]). Linear probing
allows a core to benefit fully from a loaded cache line, while double hashing
realizes better distribution.

Separating data (vectors) in an indexed data array (of size buckets x |vector])
ensures that the bucket array stays shortE-] and subsequent probes can be cached.

Hash memoization speeds up probing, by storing the hash (or part of it) in
a bucket. This avoids expensive lookups in the data array as much as possi-
ble [CIi07].

Lockless operation on the bucket array using a dedicated value to indicate unused
buckets. One bit of the hash can be used to indicate whether the vector was
already written to the data array or whether writing is still in progress [Cli07].

Compare-and-swap is used as an atomic primitive on the buckets, which are
precisely in either of the following distinguishable states: empty, being written
and complete.

2.3.3 Hash Table Operations

[Algorithm 2.3|shows the find-or-put operation. We assume for now that each line of code
can be executed atomically and with sequential consistency. At the end of the current

21E.g., 1 GB for a 32-bit memoized hash and 2?8 buckets



section, we discuss implementation solutions for different memory models. Buckets are
represented by the M array, the separate data by the T array and hash functions used for
double hashing by hash;, where i represents the hash seed analogous to the concept of
random seeds used to initialize random number sequences. A separate hash function,
i.e. a different seed, is used for the memoized hash / and the indexing hash i to reduce
collisions. Probing continues until either a free bucket is found for insertion
(Cine [7H8), or the data is found to be in the hash table (Cine[T2). Too many probes
indicate a full table, which simply causes the application to abort (Cine[T3).

The for loop on[Cine[5|handles the walking-the-line probing behavior.
captures said behavior. It returns a sequence of indices in the memoized hash array M
such that each corresponding bucket lies on the same cache line as the bucket M[i]. The
cache line can be determined by the pointer to each bucket M[x], as is done here by the
function cl/(M[x]). The point of returning a sequence of indices, is to keep the algorithm

Algorithm 2.3 The find-or-put algorithm
Require: |T|=|M|
1: procedure table_find_or_put((T,M), V)

2: h :=hashg(V)

3: for count := 1 to threshold do

4: i := hashggyun(h) mod |T)|

5: for all i € walk_the_line(M,i) do

6: if cas(M[i], empty, (h,wait)) then > Expensive CAS instruction
7: T[i] =V > Write data array
8: M[i] := (h,done)

9: return (false, i)

10: if M[i] = (h,—) then

11 await M[i] = (h,done)

12: if T[i] = V then return (true,:) > Read data array

13: report table full

Algorithm 2.4 Walking the (cache) line
Require: |T| = |M]|
1: procedure walk_the_line(M, i)
2: low := min({x | c/(M[x]) = cl(M[i])}
3: high := max({x | c/(M[x]) = cl(M[i])
4: return (i,... high,low,...,i—1)

) > Lowest index on same cache line
}) > Highest index on same cache line




deterministic. Note that the simplified code for walk_the_line returns duplicate indices
which should be removed to avoid unnecessary probes. The other code inside the loop
on handles the synchronization among threads. We now explain this part of the
algorithm in detail.

Buckets store memoized hashes and the wait status bit of the data in the Data array.
The possible values of the buckets are thus: Empry, (h,wait) and (h,done), where i
is the memoized hash. If an empty bucket is encountered on a probe sequence, the
algorithm tries to claim it by atomically writing (h,wait) to it @ After finishing
the writing of the data, (h,done) is written to the bucket (Line[S). Non-empty buckets
prompt the algorithm to compare the memoized hashes (Line[10). Only if they match
and if any writes to the data array have been completed (Cine[TT)), the value in the data
array is compared with the vector (Line|[12]).

Several aspects of the algorithm guarantee correct lockless operation:

e Whenever a write started for a hash value, the state of the bucket can never become
empty again, nor can it be used for any other hash value. This ensures that the
probe sequence remains deterministic and cannot be interrupted.

e The CAS operation on ensures that only one thread can claim an empty
bucket, marking it as non-empty with the memoized hash and with status wait.

e The await statement at [Cine[IT] waits until the write to the data array has been
completed.

Critical synchronization between threads occurs when multiple threads try to write
to an empty bucket. The CAS operation ensures that only one will succeed. The oth-
ers carry on in their probe sequence, possibly waiting until first thread’s completion.
Eventually, they either find another empty bucket, or the state vector in some bucket
(the same bucket or a bucket later in the probe sequence). This design can be seen as
a lock on the lowest possible level of granularity (individual buckets), but without a
true locking structure and associated additional costs. The algorithm uses a “lock”™ at
ILine [1 I} which can implemented as a spinlock. Although it could be argued that this
algorithm is therefore not lock-free, it is possible to ensure local progress in the case that
the “blocking” thread dies or hangs (making the algorithm wait-free). Wait-freeness is
commonly achieved by making each thread fulfill local invariants, whenever they are
not (yet) met by other threads [HSOS|]. Our measurements show, however, that under
normal operation the loop on[Cine[TT]is rarely hit due to the preceding hash memoiza-
tion check (Cine[T0). Thus, we took the pragmatic choice of keeping the algorithm, and
thus the implementation, as simple as possible.



Implementation. The implementation of requires exact guarantees
from the underlying memory model. Instruction reordering by compilers and processors
needs to be avoided across the synchronization points, otherwise the implementation
becomes incorrect. It is, for example, a common optimization to execute the body of an
if statement before the actual branching instruction. Such a speculative execution would
keep the processor pipeline busy, but would be a disastrous reordering when applied
to|Line|6|and [Line [/} the actual writing of the data would happen before the bucket is
marked as full, allowing other threads to write to the same bucket. Likewise, reordering
[Cine[7) and [Cine[8 would prematurely indicate that writing the data has completed.

As explained above, our requirements stipulate the support of the x86 architecture.
Our language of choice is C, as it allows precise control over memory allocation (and
thus implementing the walking-the-line probe sequence), and is used by our model
checker tool LTSMmiN [LPW1l1al]. Our implementation uses the GNU gcc compiler,
which provides built-in access to atomic instructions, such as CAS@ Note that on x86
these atomic instructions imply memory barriers, ensuring sequential consistency lo-
cally. Furthermore, we may rely on the fact that in the x86 architecture loads and stores
are atomic on aligned word-sized data [Int07]], such as the memoized hashes in M @ It
is therefore not a problem to implement every line in atomically.

The next step is dealing with the weak memory model of x86. To this end, gcc’s
atomic built-ins and/or explicit barriers could be used to prevent reordering all accesses
to shared memory locations in[Algorithm 2.3| (Cine[6] - [8]and [Cine[T0]—[T2). However,
the memory barriers would then serialize the entire execution resulting in no scalability.

To reason about the minimal number of barriers required, we consider all lines in the
code where shared data is read or written to. At[Line[6] a memory barrier is unavoidable
(CAS is required). At[Cine[7—[8] shared data is written, thus not reodered under TSO,
hence no memory barrier is required. At[Cine[I0]—[I2] shared data is read. These 3
instructions are not reordered by the x86 architecture [Int07]. It should be clear from
this explanation that weaker memory models require a (load) barrier on(if loads
can be reordered), and/or a (store) barrier on [Line[§] (if stores can be reordered).

We can also suggest guidelines for an implementation in Java. The Java Memory
Model (JMM) makes precise guarantees about the possible commuting of memory reads
and writes, by defining a partial order on all statements that effect the concurrent exe-
cution model [[Gos+05], Sec. 17.4]. A correct implementation in Java should declare the
bucket array as volatile and use java.util.concurrent.atomic package for
atomic references and CAS. The volatile bucket array is needed because the JMM does

22http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.htmll
23 However, one should always avoid volatiles [ER0S], and take careful precautions to avoid compiler-time
reorderings: https://www.kernel.org/doc/Documentation/atomic_ops.txt
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not entail TSO. We are unsure however whether the JVM will avoid the unnecessary
memory barrier at[Line[IT](in a loop!), on TSO architectures.

Finally, it is good practice to avoid impotent CAS instructions. This can be done by
placing an extra if condition before [Line[6] which checks whether indeed M[i] = empty
(not shown in[Algorithm 2.3). If CAS is executed blindly, many unnecessary overhead
is caused by its implied memory barrier (which locks the memory bus and waits until
all prior memory operations are committed). Agarwal et al. [Aga+10] also mention this
optimization.

Validation. [Algorithm 2.3| was modeled in PrRomMELA and checked for deadlocks
with spIN. One bug concerning the combination of write bit and memoized hash was
found and corrected.

An enormous amount of experiments with hundreds of different models, further
confirms that the number of states and transitions reported always agrees with the results
of other model checkers.

2.4 Experiments

2.4.1 Methodology

We implemented the hash table in C for x86 architectures (TSO memory model) as
explained in the previous section. We further implemented a load balancer and par-
allel reachability algorithm from and integrated everything in our model
checking toolset LTSmiN, which we discuss further in the following section. For the
following experiments, we reuse not only the input models, but also the next_state
implementation of DIVINE 2.2. Therefore, a fair comparison with DIVINE 2.2 can
be made. Furthermore, we performed experiments with the latest multi-core capable
version of the model checker spin 5.2.4 [HBO7] (D1VINE models were mechanically
translated to sPIN’s PROMELA input language). For the experiments, we chose full state-
space exploration via reachability as load generator for our state storage. Reachability
exhibits similar access patterns as more complex verification algorithms, but reduces
the code footprint and therefore potential pollution of our measurements with noise.

All model checkers were configured for maximum performance. For all tools, we
compiled models to C with high optimization settings (-03) (DIVINE also contains
a model interpreter). spiN’s models were compiled with the following flags: —03
—DNOCOMP -DNOFAIR -DNOREDUCE —DNOBOUNDCHECK —-DNOCOLLAPSE
-DNCORE=N -DSAFETY —-DMEMLIM=100000; To run the models we used the op-
tions: —-m10000000 —c0 —n —w28. Refer to [Holl 1] for details.



We performed our experiments on AMD Opteron 8356 16-core servers with 64 GB
RAM, running a patched Linux 2.6.32 kernel@ All tools were compiled using gcc 4.4
in 64-bit mode with maximal compiler optimizations (-03).

2.4.2 Models

A total of 31 models from the BEem database [Pel07] have been used in the experi-
ments, which are shown in (we filtered out models which were too small to
be interesting, or too big to fit into the available memory). Every run was repeated
at least four times, to exclude any accidental fluctuation in the measurements. Special
care has been taken to keep all the parameters across the different model checkers the
same. Especially spiN provides a rich set of options with which models can be tuned to
perform optimal. Using these parameters on a per-model basis could give faster results
than presented here. It would, however, say little about the scalability of the core algo-
rithms. Therefore, we decided to leave all parameters the same for all the models. We
avoid resizing of the state storage in all cases by increasing the initial hash table size to
accommodate 228 states (enough for all benchmarked input models).

One parameter that we cannot control is the difference in state vector sizes. DIVINE
and spiN use different vectors because the DVE models have been translated to PROMELA.
LTSmin uses the original DVE models as well. But because LTSmiIN is a language-
independent model checker, it defines a fixed format for these vectors, which can cause
an increase in size of up to a factor 3 (characters are stored as integers).
shows the different state vector sizes in spiN, DIVINE and LTSMIN. When comparing
the different tools therefore, we take great care to compare absolute speedups, i.e. using
the runtimes of the fastest tool for Tj,,,.

Because of the translation, the state count of some models is different in spiN. For
this reason, only 19 models could be used for spin: only those with similar state counts
(less than 20% difference; recall that for spiN, models are translated from DVE to
PROMELA).

2.4.3 Results

shows the runtimes of only three models for all model checkers. We ob-
serve that DIVINE is the fastest model checker for sequential reachability. Since the last
published comparison between D1VINE and spin [BBRO7]], D1VINE has been improved

24Experiments showed large regressions in scalability on newer 64-bit Linux kernels (degrading runtimes
with 10+ cores). Despite being undetected since at least version 2.6.20 (released in 2007!), they were easily
exhibited by our model checker. With a repeatable test case, the Linux developers quickly provided a patch:
https://bugzilla.kernel.org/show_bug.cgi?id=15618



https://bugzilla.kernel.org/show_bug.cgi?id=15618

Table 2.2:

Model details for DiVINE, LTSMIN and sPIN

Beem Model Reachable States State Vector Size [Byte]

D1VINE, LTSMmIN spiN  DIVINE spin  LTSmIN
anderson. 6 18,206,917 18,206,919 25 68 76
at.5 31,999,440 31,999,442 20 68 56
at.6 160,589,600 — 20 — 56
bakery.6 11,845,035 11,845,035 24 48 80
bakery.7 29,047,471 27,531,713 24 48 80
blocks.4 104,906,622 88,987,772 23 44 88
brp.5 17,740,267 — 24 — 72
cambridge.7 11,465,015 — 60 — 208
elevator_planning.2 11,428,767 11,428,769 36 52 140
firewire_link.5 18,553,032 — 66 — 200
fischer.6 8,321,728 8,321,730 27 92 72
frogs.4 17,443,219 17,443,221 33 68 120
frogs.5 182,772,126 182,772,130 38 68 140
hanoi.3 14,348,907 14,321,541 63 116 228
iprotocol.6 41,387,484 — 43 — 148
iprotocol.7 59,794,192 — 47 — 164
lamport.8 62,669,317 62,669,317 22 52 68
lann.6 144,151,628 — 28 — 80
lann.7 160,025,986 — 35 — 100
leader_filters.7 26,302,351 26,302,351 36 68 120
loyd.3 239,500,800 214,579,860 18 44 64
mcs.5 60,556,519 53,779,475 26 68 84
needham. 4 6,525,019 — 51 — 112
peterson.’7 142,471,098 142,471,100 30 56 100
phils.6 14,348,906 13,956,555 45 140 120
phils.8 43,046,720 — 48 — 128
production_cell.6 14,520,700 — 42 — 104
szymanski.5 79,518,740 79,518,740 30 60 100
telephony.4 12,291,552 12,291,554 24 56 80
telephony.7 21,960,308 21,960,310 28 64 96
train-gate.7 50,199,556 — 43 — 128




2.4 Experiments

with a model compiler. In fact, all 3 model checkers use the approach of compiling
the model to obtain fast successor generation. spIN is only slightly slower than DiIVINE
and shows the same linear curve but with a gentler slope. We suspect that the grad-
ual performance gains are caused by the cost of the inter-thread communication (see
Table 2.1)).

LTSMmin is slower in the sequential cases. We verified that the allocation-less hash
table design causes this behavior; with smaller hash table sizes, the sequential runtimes
match those of DIVINE. We did not bother optimizing these results, because with two
cores, LTSMIN is already at least as fast as DiVINE.

[Figure 2.3| [Figure 2.4] and [Figure 2.5| show the speedups measured with LTSMIN,
D1VINE and spiN (note that we normalize with T, of DIVINE, the fastest sequential
tool). On 16 cores, LTSMIN shows a two-fold improvement over D1VINE and a four-fold
improvement over spIN. We attribute the difference in scalability for DIVINE to the extra
synchronization points needed for the inter-process communication by DiVINE. Recall
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Figure 2.2: (Log-scale) Runtimes in spiN, LTSMIN and D1VINE 2 (3 models)
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that the model checker uses static state-space partitioning, hence most successor states
are enqueued at other cores than the one which generated them. Another disadvantage
of DIVINE is its use of a management thread, which causes the regression at 8 and
16 cores.

The speedups are shown to be linear for LTSmin. Only a speedup of 8 with 16 cores
is achieved compared to the sequential case of DiIVINE. shows the speedup
of the individual models with LTSmIN as sequential base case (Te,), to illustrate the
scalability of the hash table itself. These results demonstrate almost ideal scalability.

spIN shows inferior scalability even though it uses (like LTSMIN) a shared hash ta-
ble, while doing load balancing via stack slicing. We can only guess that the locking
mechanism used in spIN’s hash table (region locking) are not as efficient as our lockless
hash table. However, in LTSMIN we obtained far better results even with the slower
pthread locks. It might also be that stack slicing does not have a consistent granu-
larity, because it uses the (irregular) search depth as a time unit (using the terms from
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Figure 2.6: Speedup of BEEM models with LTSmin (LTSMmin itself as base case). This
figure shows that the shared hash table implementation attains almost ideal speedups.

T (work(Py,depth)) > T (work(Py,depth))).

Remark. A potential reason for the limited scalability of spiN could be a memory
bandwidth bottleneck. We tested this hypothesis by enabling spin’s smaller, collapsed
state vectors (-DCOLLAP SE). We carried out a full spin benchmark run with collapsing
enabled (see and saw little improvement compared to the speedup results
without COLLAPSE. These results are consistent with the observation that LTSmin
is faster, despite generally producing larger state vectors than both, spin and DiVINE
(Table 2.2): in LTSMiN, each state variable gets 32-bit aligned (for API reasons, not
performance).

shows the total times and average speedups over all models, for all tools.
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Figure 2.8: Counting how often the algorithm “locks”

2.4.4 Shared-Storage Parameters

To verify our claims about the hash table design, we collected internal measurements
and performed synthetic benchmarks for stress testing. First, we measured how often
the write “lock” was hit. plots the lock hits against the number of cores
for several different sized models. For readability, only the worst-performing, and thus
most interesting, models were chosen. Even then, the number of lock hits is a very small
fraction of the number of table_find_or_put calls (equal to the number of transitions,
typically in the hundreds of millions). The Hanoi puzzle performs worst in this respect,
probably again due to its sandglass-shaped state space (see[Section 2.2).

We measured how the average throughput of (the number of
table_find_or_put calls) is affected by the table fill rate, the table size and the read/write
ratio. illustrates the effects of different read/write ratios on the hash table
using synthetic input data. The average throughput remains largely unaffected by a high
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fill rate, even up to 95 % (as for[Figure 2.10] which plots the same lines for different table
sizes). We conclude that the asymptotic time complexity of open-addressing hash tables
poses little real problems in practice. However, an observable side effect of oversized
hash tables is lower throughput for low fill rates due to increased cache misses. Our
hash table design amplifies this effect because it uses a pre-allocated data array and no
pointers. This explains the lower sequential performance of LTSmin.

We also measured the effect of varying the state vector size and did not find any
noticeable change in the speedup behavior (except for the expected lower throughput
due to higher data movement). This shows that hash memoization and a separate data
array perform well. Walking-the-line probing shows better performance and scalability
than double hashing alone, due to cache effects. Although slower on average, walking-
the-line followed by double hashing beats simple linear probing at fill-rates above 95 %
(in particular, on slower memory subsystems), because it leads to better distribution and
thus fewer probes.

2.5 Discussion and Conclusions

We designed a hash table suitable for application in reachability analysis. We imple-
mented it as part of a model checker together with different exploration algorithms
(pseudo BFS and pseudo DFS) and explicit load-balancing. We demonstrated the effi-
ciency of the complete solution by comparing the absolute speedups to spin 5.2.4 and
D1VINE 2.2, both leading tools in this field. We claim two times better scalability than
D1VINE and four times better than spiN on average (Figure 2.7)), with individual results
far exceeding these numbers. We also investigated the behavior of the hash table under
different fill rates and found it to live up to the imposed requirements.

Limitations. Without the use of pointers the current design cannot easily cope with
variably sized state vectors. In our model checker, this does not pose a problem be-
cause states are always represented by a vector of a static length. Our model checker
LTSmin [BPW10; LPW11a] can handle different frontends. It connects to DiVINE-
cluster, DIVINE 2.2, PROMELA (via NipsVM [Web07]]), tCRL, MCRL2 and ETF (in-
ternal symbolic representation of state spaces). Some of these input languages require
variably sized vectors (NIPS). We solve this by an initial exploration which continues
until a vector of stable size is found, and aborts when none can be found up to a fixed
bound. So far, this limitation did not pose a problem.

For LTSmin, the results in the sequential case turn out to be around 20% slower
than DIVINE 2.2. One of the culprits for this performance loss is the already men-
tioned suboptimal utilization of cache effects for small models. Indeed, the slowdown



is observable in mostly for those models with small state spaces according
to Embracing pointers and allocation, like in e.g. [Mic02], could be a poten-
tial remedy, however, it is unclear whether such a solution still scales when it actually
matters (i.e., for large models).

Further performance is lost in an extra level of indirection (function calls) due to the
design of LTSMmIN, which strictly separates the language frontend from the exploration
algorithms. We are willing to pay this price in exchange for the increased modularity
of our tool.

Discussion. We make several observations:

e We provide evidence that centralized state storage can be made to scale at least
as well as static state-space partitioning, contrary to prior belief [BROS].

e We also show that scalability is not as dependent on long state vectors and transi-
tion delays as earlier thought [HolO8]. In fact, we argue that a scaling implemen-
tation performs better with smaller state vectors, because the number of opera-
tions performed per loaded byte is higher, thus closer to the strengths of modern
multi-core systems.

e Shared state storage is also more flexible [BROS||, for example allowing pseudo
DFS (like the stack-slicing algorithm) and fast deadlock/invariant searches [RKS8§]].
Moreover, it facilitates explicit load balancing algorithms, enabling the exploita-
tion of heterogeneous systems. From preliminary experiments with load balanc-
ing we conjecture that overhead is negligible compared to static load balancing.

e Performance-critical parallel software needs adaptation to modern architectures
(steep memory hierarchies). The performance difference between DIVINE, sPiN
and LTSwmin is an indication. DIVINE uses an architecture which is directly de-
rived from distributed model checking and the goal of spiN was for “these new
algorithms [...] to interfere as little as possible with the existing algorithms for
the verification of safety and liveness properties” [HolOS|]. With LTSmiIN, we
had the opportunity to tune our design to the architecture of our target machines,
with excellent pay-off. We noticed that avoiding cache line sharing and keeping
a simple design was instrumental in the outcome.

e Holzmann conjectured that optimized sequential code does not scale well [HBO7].
In contrast, our parallel implementation is faster in absolute numbers and also
exhibits excellent scalability. We suspect that the (entirely commendable) design
choice of spIN’s multi-core implementation to support most of sPIN’s existing
features unchanged is detrimental to scalability.
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Applicability. The components of our reachability can be reused directly for other
model checking applications. The hash table and the load balancing algorithms can be
reused to realize scalable multi-core (weak) LTL model checking [BBRO7; [BBR09b],
symbolic exploration and space-efficient enumerative exploration. We experimented
with the latter using tree compression based on our hash table. Results are
very promising and we follow up on that in|Chapter 3|and [Chapter 4}

Final note. shows that the speedups with LTSmin are almost ideal. We still
considered it interesting to investigate the overhead caused by the load balancer, in order
to identify the components that cause the most communication. By design, the load
balancer should only be called when threads run out of work on their local search stack
or queue, thus limiting communication as much as possible. Communication mainly
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Figure 2.11: Speedup of BEem models with LTSMmIN using static load balancing
(LTSmin itself as base case). Naturally, the sequential runtimes remain unaffected by
the different load-balancer, so the figure is comparable to[Figure 2.6|
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happens via the shared hash table, though sparsely due to its low spatial locality. In
an initial version of the exploration algorithm, we employed static load balancing by
means of an initial, short BFS exploration, after which the states from the last level
were handed off to all threads. The results are shown in Several models
were insensitive to this static approach (c.f. [Figure 2.6), others, like hanoi and frogs,
are very sensitive due to the sandglass shape of their state spaces (see[Section 2.2). A
look at the runtimes confirmed for us that dynamic load balancing did not come with a
noticeable performance penalty for the model that scale with static load balancing, i.e.
without any communication except via the hash table. Since hanoi and frogs also
scale well according to we can conclude that in all cases the load balancer
causes very little overhead (in the sequential base case, load balancing namely does not
occur).

[Chapter 4| presents some experiments comparing our lockless hash table with other
parallel solutions. The results show a clear advantage for our table. We did not yet
consider other types of hash tables, like Cuckoo hashing [PR04] or Hopscotch hash-
ing [HSTO8|]. Cuckoo hashing is an unlikely candidate, since it requires updates on
many locations upon inserts, easily resulting in extraneous cache coherence overhead.
Hopscotch hashing could be considered because it combines a low memory working
set with constant lookup times even under higher load factors. However, Hopscotch
hashing increases the memory working set for insertions, potentially sacrificing some
speedup. It would still be interesting to investigate its performance relative to our hash
table.







Parallel Recursive State Compression for Free

Alfons Laarman, Jaco van de Pol, Michael Weber

Abstract

The current chapter focuses on reducing memory usage in enumerative model
checking, while maintaining the multi-core scalability obtained in earlier work. We
present a multi-core tree-based compression method, which works by leveraging
sharing among sub-vectors of state vectors.

An algorithmic analysis of both worst-case and optimal compression ratios
shows the potential to compress even large states to a small constant on average
(8 bytes). Our experiments demonstrate that this holds up in practice: the median
compression ratio of 279 measured experiments is within 17% of the optimum for
tree compression, and five times better than the median compression ratio of SpIN’s
COLLAPSE compression.

Our algorithms are implemented in the LTSmiN tool, and our experiments show
that for model checking, multi-core tree compression pays its own way: it comes
virtually without overhead compared to the fastest hash table-based methods.

About this chapter: The current chapter is based on the paper “Paralle/ Recursive
State Compression for Free”, which was published at SPIN 2011 [LPW11c|. An
extended report on the work was published at Arxiv [LPW11b| and is integrated in
the current chapter.

Compared to the original version of the paper, we simplified the reachability algorithm
and the tree database figure in[Section 3.2] We also completely revised
by simplifying the algorithms and adding illustrative examples. [Section 3.4|was rewrit-
ten, to provide a more detailed understanding of the compression ratios and how they
relate to the implementation choices of the tree.



3.1 Introduction

Many verification problems are computationally intensive tasks that can benefit from
extra speedups. Considering recent hardware trends, these speedups do not come au-
tomatically for sequential exploration algorithms, but require exploitation of the paral-
lelism within multi-core CPUs. In we have shown how to realize scalable
multi-core reachability, a basic task shared by many different approaches to verification.

Reachability searches through all the states of the program under verification to find
errors or deadlocks. It is bound by the number of states that fit into the main memory.
Since states typically consist of large vectors with one slot for each program variable,
only small parts are updated for every step in the program. Hence, storing a state in
its entirety results in unnecessary and considerable overhead. State compression solves
this problem, as the current chapter will show, at a negligible performance penalty and
with better scalability than uncompressed hash tables.

Related work. In the following, we identify compression techniques suitable for (on-
the-fly) enumerative model checking. We distinguish between generic and informed
techniques.

Generic compression methods, like Huffman encoding and run length encoding,
have been considered for explicit state vectors with meager results [HGP92; |GVR99].
These entropy encoding methods reduce information entropy [CT91] by assuming preva-
lence of common bit patterns. Such patterns have to be defined statically and cannot be
“learned” (as in dynamic Huffman encoding), because it is infeasible to change the en-
coding during state-space exploration. Otherwise, desirable properties, like fast equiv-
alence checks on states and constant-time state-space inclusion checks, will be lost.

Other work focuses on efficient storage in hash tables [[Cle84;|GVO03] (see also
[ter 4). The assumption is that a uniformly distributed subset of n elements from the
universe U is stored in a hash table. If each element in U hashes to a unique location in
the table, only one bit is needed to encode the presence of the element. If, however, the
hash function is not so perfect or U is larger than the table, then at least a quotient of the
key needs to be stored and collisions need to be dealt with. This technique is therefore
known as key quotienting. While its benefit is that the compression ratio is constant
for any input (not just constant on average), compression is only significant for small
universes [[GVO3|], smaller than we encounter in model checking (where the universe
consists of all possible combinations of the slot values, not to be confused with the set
of reachable states, which is typically much smaller).

The information-theoretic lower bound on compression, or the information entropy,
can be reduced further if the format of the input is known in advance (certain subsets of



U become more likely). This is what constitutes the class of informed compression tech-
niques. It includes works that provide specialized storage schemes for certain specific
state structures, like Petri nets [[EPPOS]| or timed automata [Lar+97]], but also CoLLAPSE
compression introduced by Holzmann for the model checker Spin [Hol97b]]. It takes
into account the independent parts of the state vector. Independent parts are identified
as the global variables and the local variables belonging to different processes in the
Spin-specific language PROMELA.

Blom et al. [Blo+08a]] present a more generic approach, based on a tree. All vari-
ables of a state are treated as independent and stored recursively in a binary tree of hash
tables. The method was mainly used to decrease network traffic for distributed model
checking. Like CoLLAPSE, this is a form of informed compression, because it depends
on the assumption that subsequent states only differ slightly.

Problem statement. Information theory dictates that the more information we have
on the data that is being compressed, the lower the entropy and the higher the achiev-
able compression. Favorable results from informed compression techniques [EPPOS]
Lar+97; [Hol97b; Blo+08a] confirm this. However, the techniques for Petri nets and
timed automata employ specific properties of those systems (a deterministic transition
relation and symbolic zone encoding respectively), and, therefore, are not applicable
to enumerative model checking. CoLLAPSE requires local parts of the state vector to
be syntactically identifiable and may thus not identify all equivalent parts among state
vectors. While tree compression showed more impressive compression ratios by analy-
sis [Blo+08al] and is more generically applicable, it has never been benchmarked thor-
oughly and compared to other compression techniques, nor has it been parallelized.

Generic compression schemes can be added locally to a parallel reachability algo-
rithm (see[Section 3.2). They do not affect any concurrent parts of its implementation
and even benefit scalability by lowering memory traffic [HGP92]. While informed com-
pression techniques can deliver better compression, they require additional structures
to record uniqueness of state vector parts. With multiple processors constantly access-
ing these structures, memory usage is again increased and mutual exclusion locks are
strained, thereby decreasing performance and scalability. Thus the benefit of informed
compression requires considerable design effort on modern multi-core CPUs with steep
memory hierarchies.

Therefore, in the current chapter, we address two research questions: (1) does tree
compression perform better than other state-of-the-art on-the-fly compression tech-
niques (most importantly COLLAPSE), (2) can parallel tree compression be implemented
efficiently on multi-core CPUs.




Contribution. The current chapter explains a tree-based structure that enables high
compression rates (higher than any other form of explicit-state compression that we
could identify) and excellent performance. A parallel algorithm is presented
that makes this informed compression technique scalable in spite of the mul-
tiple accesses to shared memory that it requires, while also introducing maximal shar-
ing. With an incremental algorithm, we further improve the performance, reducing
contention and memory footprint.

An analysis of compression ratios is provided and the results of exten-
sive and realistic experiments match closely to the analytical optima. The
results also show that the incremental algorithm delivers excellent performance, even
compared to uncompressed verification runs with a normal hash table. Benchmarks on
multi-core machines show near-perfect scalability, even for cases which are sequentially
already faster than the uncompressed run.

3.2 Background

In[Section 3.2.1] we introduce a parallel reachability algorithm using a shared hash table
similar to the one in[Chapter 2} The table’s main functionality is the storage of a large set
of state vectors of a fixed length k. We call the elements of the vectors slots and assume
that slots take values from the integers, possibly references to complex values stored
elsewhere (hash tables or canonization techniques can be used to yield unique values
for about any complex value). Subsequently, in[Section 3.2.2] we explain two informed
compression techniques that exploit similarity between different state vectors. While
these techniques can be used to replace the hash table in the reachability algorithm,

they are are harder to parallelize as we show in[Section 3.2.3]

3.2.1 Parallel Reachability

The parallel reachability algorithm launches N threads with unique ids
and assigns the initial states of the model under verification only to the open set S;

of the first thread (Cine[I). The open set can be implemented as a stack or a queue,
depending on the desired search order (note that with N > 1, the chosen search order
will only be approximated, because the different threads will go through the search
space independently). The closed set of visited states, DB, is shared, allowing threads
executing the search algorithm to synchronize on the search space and each
to explore a (disjoint) part of it (see [Chapter 2)). The find_or_put function returns true
when succ is found in DB, and inserts it when it is not.
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Load balancing is needed so that workers that run out of work (S;; = @) receive
work from others. The function load_balance takes the local open set Sy from worker
id, queries the open sets of the other workers and either detects termination returning
false, or else transfers remote load to S;; and returns true. We implemented the function
load_balance as a form of Synchronous Random Polling [San97a], which also ensures
valid termination detection (see[Section 2.7). It returns false upon global termination.

S .putall(initial_states)
parallel_for(id := 1 to N)
while (load_balance(S;,))
while (S;; # 0)
s = Siq.pop()
if (NEXT-STATE(s) = 0)
...report deadlock...

for (r € NEXT-STATE(s))
if (—find_or_put(DB, t))
Siq-put(z)

Algorithm 3.1: Parallel reachability algorithm with shared state storage.

DB is generally implemented as a hash table. In we presented a lock-
less hash table design, with which we were able to obtain almost perfect scalability.
However, with 16 cores, the physical memory, 64GB in our case, is filled in a matter
of seconds, making memory the new bottleneck. Informed compression techniques can
solve this problem with an alternate implementation of DB.

3.2.2 Collapse & Tree Compression

CoLLAPSE compression stores logical parts of the state vector in separate hash tables. A
logical part is made up of state slots local to a specific process in the model, therefore
the hash tables are called process tables. References to the parts in those process tables
are then stored in a root hash table. Tree compression is similar, but works on the
granularity of slots: tuples of slots are stored in hash tables at the fringe of the tree,
which return a reference. References are then bundled as tuples and recursively stored
in tables forming a binary tree. [Figure 3.1| shows the difference between the process
tree (depth 2) and tree compression (depth log(k)).

When using a tree to store equal-length state vectors, compression is realized by the
sharing of subtrees among entries. [Figure 3.7illustrates this. On the left a set of vectors
is represented as stored in a hash table with k-sized buckets (omitting any empty buckets
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Figure 3.1: Process table and (binary) tree for the system X (a,b,c,d)||Y (p,q)||Z(u,v).
Taken from [BLLO3].
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Figure 3.2: Sharing of subtrees in tree compression. Taken from [Blo+08a]].

in the table). On the right, we see the same set of vectors, but now stored in a binary tree
of tables with buckets of size 2 storing tuples (again omitting any empty buckets). Each
tuple in the root table represents one state vector. Take the tuple at location 5 in
the root table: We use zero-based, top-to-bottom indexing in the bucket arrays (indexing
has benefits over using larger pointers [Jan+06]). The values of the tuple (white) are
indices in the hash tables of the root’s children in the tree. The indexing continues
recursively for the tuple values that are white, until we eventually reach the leaf values
(gray), which represent the state reading from left to right.

Assuming that indices have the same size as the slot values (say b bits), we can
determine the compression rate in this example. The 9 vectors as stored in the plain



hash table on the left, take 9 x 6b = 54b. The tree on the other hand takes 9 x 2b +4 x
3 x 2b = 42b. The difference between 42b and 54b may seem minimal, but we only
stored 9 relatively short vectors of relatively small size. In model checking, we often
deal with millions of vectors with potentially hundreds of slots.

It is easy to see that more vectors improve the compression. For example, we may
add a tuple to the table on the right. With this we can create 9 new vectors by
adding 9 tuples to the root table. These new vectors cost only 200 more, compared
to the 54b it would take to store them in a hash table. In fact, with combinatorial state
vectors the child tables store only 1/ tuples, for a parent table storing n tuples, as shown
in[Section 3.4l In [Section 3.5] we show empirically that the combinatorial condition
often holds in practice.

3.2.3 Why Parallelization is not Trivial

Adding generic compression techniques to the above algorithm can be done locally by
adding a line compr := compress(succ) after[Cine[8] and storing compr in DB. This cal-
culation in compress only depends on the local succ and is therefore easy to parallelize.
If, however, a form of informed compression is used, like COLLAPSE or tree compres-
sion, the compressed value comes to depend on previously inserted state parts, and the
compress function needs (multiple) accesses to the storage.

8 T T T T
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Figure 3.3: Speedups with COLLAPSE.




Global locking or even locking at finer levels of granularity can be devastating for
multi-core performance for single hash table lookups (see [Chapter 2). Informed com-
pression algorithms, however, need multiple accesses and thus require careful attention
when parallelized. [Figure 3.3|shows that Spin’s CoLLAPsE suffers from scalability prob-

lems (experimental settings can be found in[Section 3.3).

3.3 Tree Database

first describes the original tree compression algorithm from [Blo+08a].
As its implementation has an immediate effect on the obtained compression, we discuss
some implementation considerations throughout the section. In[Section 3.3.2] we paral-
lelize the structure by merging the multiple hash tables of the tree into a single fixed-size
lockless hash table. By simplifying the data structure in this way, we aid scalability.

Furthermore, we prove that it preserves consistency of the database’s content. How-
ever, as we also show, the new tree will “confuse” tree nodes with leaf nodes and er-
roneously report some vectors as found, while in fact they were not added yet. This is
corrected by tagging root tree nodes, completing the parallelization.

shows how tree references can also be used to compact the size of the
open set in[Algorithm 3.1] Now that the necessary parallelization and space reductions
are obtained, the current section is concluded with an algorithm that improves the per-
formance of the tree database by using thread-local incremental information from the

reachability search (Section 3.3.4).

3.3.1 Original Sequential Tree Database

The original tree compression algorithm from [BIo+08a]l stores the tuples from [Fig]
[ure 3.2)in a balanced binary tree of hash tables. Such a tree has k — 1 tree tables, each
of which has a number of siblings of both the left and the right subtree that is equal
or off by one. The tree_create function in generates the Tree structure
accordingly, with a TreeTable structure storing left and right subtrees, a Table table and
the length of the (sub)tree k. The table_create function allocates a hash table for storing
vectors of the length provided by its parameter.

The tree_find_or_put function in takes as arguments a Tree and a
state vector V (both of the same size k > 1), and returns a tuple containing a reference
to the inserted value and a Boolean indicating whether the value was found (true) or
not (false). In the latter case, it is added to the tree as a side effect, just as in the ta-
ble find_or put function described in The function is recursively called on
each half of the state vector (Line [3H4)) until the vector length is one. The recursion



AN L W

wn A W N =

3

ends here and a single value of the vector is returned. At[Cine[d] the returned values of
the left (R;) and right (R,) subtree are stored as a tuple in the hash table using the ta-
ble_find_and_put operation. That operation also returns a tuple containing a reference
to the value ((R;,R,)) in the hash table and a Boolean indicating whether it was found
in the table (true) or had to be added (false).

type Tree = TreeTable(Tree left, Tree right, Table table, int k) | Nil

proc Tree tree_create(k)
if (k=1)
return Nil
return TreeTable(tree_create([%/2]), tree_create(|4/2]), table_create(2), k)

Algorithm 3.2: Tree data structure.

proc (int, bool) tree_find_or_put(TreeTable(left,right,table,k), V)
assert (|V| = k)
(Ry, _) = tree_find_or_put(left, lhalf(V))
(Ry, _) :=tree_find_or_put(right, rhalf(V))
return table_find_or_put(zable, (R;,R,))

proc (int, bool) tree_find_or_put(Nil, V)
assert (|[V| =1)
return (V[0], )

Algorithm 3.3: Tree data structure algorithm for the tree_find_or_put function.

The function lhalf takes a vector V as argument and returns the first half of the
vector: lhalf(V) = [Vy,...,V(ji)-1)], and symmetrically rhalf (V) = [V, ..., Vg1,
with k = |V|. So, |lhalf (V)| = [|V|/2], and |rhalf (V)| = [|V|/2].

Example 3.1. shows how the vector (3,5,5,4,1,3) of length 6 is handled
by the tree_find_or_put function operating on a tree of length 6 (tree_create (6)). Each
recursive call is represented by the vector parameter V = {(...), and a tuple of 2 squares
containing the return values of the subsequent recursive call at[Line[3H4| The returned
values are combined into tuples and stored in the hash table of the respective TreeTable.
One such return value is either a slot from the vector (colored gray here), when the
corresponding tree (left or right) equals Nil and is reached, or a location in




a hash table when the corresponding tree is a TreeTable and is reached. In the
example, these locations are named a,b, c and d, Their value depends on the hash tables
as illustrated in[Figure 3.2] Location a for instance points to index 2 in the table of the
left-most tree node, storing (3,5).

(3,5,5,4,1,3)

Figure 3.4: Example insertion of a k-sized vector in the tree. Notice the K — 1 tree nodes.

Implementation considerations. A space-efficient implementation of the hash ta-
bles is crucial for good compression ratios. As discussed before, the hash tables in the
tree contain free buckets to insert new keys (states). The overhead of these buckets is
usually kept low by resizing the hash table when it becomes too full, e.g. at a fill rate
of 75%. Resizing is especially necessary in the tree because the different tree tables
contain an unpredictable and widely varying number of entries, or tuples (tables may
store as few tuples as the maximum number of tuples stored in either of its children, and
as many as the product of the number of tuples stored in both its children, as shown in
[ection 3.4).

However, resizing replaces entries, thereby breaking the stable indexing that we used
in (white values in the tuples). These indices cannot simply be modified
in the tuples of the parent hash table, because changing the tuple often implies that its
hash value changes, thus the tuple needs to be rehashed. In this way, the rehash cascades
upwards through the tree, which would be infeasible especially since higher tables can
contain quadratically as many entries (see[Cemma 3.1).

As a famous saying goes: “all problems in computer science can be solved by an-
other level of indirection” [SpiO7|]. Indeed, the problem of reifying stable indices was
solved by maintaining a second table with references in [Blo+08al. shows
how the left-most table in would be stored in this resizing table with stable
indices. The unoccupied buckets in the table on the left are shown to make clear that
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Figure 3.5: Example of a resizing hash table storing tuples with stable indexing.

the buckets are filled without any particular order, as the tuples are hashed to a location.
The additional index array on the right is filled in sequential fashion. Upon rehashing
of the table, the indices are modified but not replaced in the array, hence it can be used
as an index.

David Wheeler, to whom the above quote is attributed, also added the follow-up:
“But that usually will create another problem.” Again he is right in this case, as the
additional array increases the number of (random) memory references and the storage
costs per entry by 50% compared to a non-resizing hash table storing only tuples. While
a 50% increase in storage requirements seems modest, this requirement becomes more
problematic in the concurrent setting, as we will show in the following section. In[Chap-]
ter 2| we developed a non-resizing lockless hash table that exhibits excellent scalability
because it reduces the memory footprint as much as possible. The increased number of
memory references in the indexing table of retrocedes this benefit.

3.3.2 Concurrent Tree Database

Three conflicting requirements arise when attempting to parallelize

e Resizing is needed because the load of individual tables is unknown in advance
and varies highly.

e Stable indexing is needed, to allow for indexed references to table entries.

e Storing the additional array requires extra memory as explained in the previous
section, but it also adds another memory reference. This increases the memory
footprint, which in turn reduces scalability, as explained in
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Figure 3.6: Example of the Figure 3.7: The same Figure 3.8: Same as
tree structure storing 1 state example with a different with an additional
vector as represented in a hashing function. The root tag bit (middle).
merged table. The root of (collapsed) root here is

the vector is ) .

An ideal solution would be to merge all hash tables into a single non-resizable table.
This would ensure stable indices without any overhead for administering them, while
at the same time allowing the use of a scalable hash table design from [Fig
shows how the single vector (3,5,5,4, 1,3) is stored in a single table (the hashing
function is left implicit, e.g.: the tuple (6,5) hashes to location 2). The merged-table
scheme enables maximal sharing of tuples between tree nodes: For example, if (3,5)
would hash to location 3, instead of location 6, then we obtain the tree table shown in
in which the root, an internal node ( in [Figure 3.6) and the leaf all
collapsed into that same tuple .

Concerning the correctness of merging the tree tables, we can ask the following
questions:

1. Can all tables safely be merged without corrupting the contents of the database?

2. Will the tree_find_or_put function return the right Boolean result when the tree
tables are merged?

The maximal sharing as exemplified above already suggests a negative answer to
the second question, as the algorithm can no longer distinguish between a tuple that is
aroot and a tuple that is a leaf (if the leaf tuple is inserted first, as indeed is, the
root tuple will be seen as already present, hence the corresponding vector will
be regarded as previously inserted). We will come back to that later; first, we show that
the first question can be answered positively.



To argue about the first question, we made a mathematical model of
with one merged hash table. The hash table has stable indices and is concurrent, hence
each unique, inserted element will atomically yield one stable, unique index in the table.
Therefore, we can describe table_find_or_put as an injective function: H, : N 2 N. The
tree_find_or_put function can now be expressed as a recurrent relation (7 : Nt 5 N,
for k> 1 and A € N¥):

Ti(Ao, - A1) = Ho(Tripa (Aos - A 1)) Tiwn) (A s - - A1)

Ti(Ag) = Ao.

If T provides an injective function (just as H), then the tree with merged tables preserves
all inserted vectors.

Theorem 3.1. Forall k > 1, the function T describing the tree with merged hash tables
is injective.

Proof. To prove (injection): C = Ti(A) = T(B) = A = B, with A,B € N¥. We use
induction over k:

In the base case, Tj (x) = I(x), the identity function satisfies C being injective.

Assume C holds Vi < k with k > 1. We have to prove for all A, B € N, that:
Hy (T (L(A)), Tiapa) (R(A))) = Ho (T (L(B)), Tiapn) (R(B))) = A =B,
WithL(X)=X0,...7X((k/ﬂ,1) and R(X) = X[k/z} Xk 1)-

Note that:
(%) L(A)=L(B)AR(A)=R(B)}ifA=B

L(A) #L(B)VR(A) #R(B)} if A # B.

Hence,

Ti(A) = Ti(B)
= H(Tji2)(L(A)), Tjxj»| (R(A))) = Ha(Tpso) (L(B)), Txo  (R(B)))

inj.H,

= Tiy2) (L(A)) = Tjia) (L(B)) A Tjspa) (R(A)) = Tiio) (R(B))
AP 1(A) = L(B) AR(A) = R(B)

SN

Proving that C holds for all A, B and k. O

Now, it follows that an insert of a vector A € N¥ always yields a unique value for the
root of the tree (7;), thus demonstrating that the contents of the tree database are not
corrupted by merging the hash tables of the tree nodes.

However, as we suggested before, will not always yield the right
Boolean answer with merged hash tables. Combining the example of with
the mathematical model, we have T»(3,5) = T3(3,5) = T5(3,5) = H2(3,5). Since the
leaf is inserted first, the root will find the tuple (3,5) already inserted.
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type ConcurrentTree = CTree(Table table, int k)

proc (int, bool) tree_find_or_put(CTree(table,k), V)
assert (|[V| <kA|V|>0)
if (V| =1)
return (V[0], _)
Ry, ) :=tree_find_or_put(CTree(table,k), Ihalf(V))
Rr, _ ) =tree_find_or_put(CTree(table,k), rhalf(V))

v—l /-\AA

R, B) = table _find_or_put(zable, (R;,R;)) > Find/put in tree table
\V| > The recursion returned at the root call
o= 1f (table_try_tag(R)) then false else true > Is the root new?

return (R, B)

Algorithm 3.4: Concurrent tree data structure algorithm for tree_find_or_put function.

Nonetheless, we can use the fact that 7} is an injection to create a concurrent tree
database by adding one bit (a tag) to the merged hash table. The tag bit can be seen as
having the two values, non_root and is_also_root, and is always initiated as non_root.
defines a new ConcurrentTree structure, only containing a single hash
table table and the length of the vectors k. Once the recursive calls return at the root
node, the table_try tag function now atomically tries to set the tag on the entry (the
tuple) pointed to by R to is_also_root in table. To this end, it can employ the atomic
hardware instruction compare-and-swap (CAS) (see[Chapter 2). If the function fails to
set the tag to is_also_root (because the tag was already set to that value), we return true
(indicating the state vector was found in the tree), and else we return false (indicating
that it was not found and has been inserted).

Although we no longer maintain explicit tree nodes in[Algorithm 3.4] the recursion
still follows the same pattern of doing k — 1 table lookups as explained in[Example 3.1]
In the following, we will keep referring to the steps in the recursion as tree nodes, even
though they are now virtual nodes.

Implementation considerations. Crucial for efficient concurrency is memory lay-
out. While a bit array or sparse bit vector may be used to implement the tags (using
R as index), its parallelization is hardly efficient for high-throughput applications like
reachability analysis. Each modified bit will cause an entire cache line (with typically
thousands of other bits) to become dirty, causing other CPUs accessing the same mem-
ory region to be forced to update the line from main memory. The latter operation is
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multiple orders of magnitude more expensive than normal operations, and also more
costly than a simple uncached load. Therefore, we merge the bit array/vector into the
hash table fable as shown in for this increases the spatial locality of node
accesses with a factor proportional to the width of tree nodes. The small column in the
middle represents the bit array with white entries indicating non_root and black entries
indicating is_also_root. Tuple and bit are bit-crammed into a word (e.g. [Section 9.6.3).

Furthermore, to implement table, we used the lockless hash table presented in[Chap
benefiting from its cache-efficient probing behavior. This table normally uses
memoized hashes in order to speedup probing over larger keys. Since the stored tree
nodes can be relatively small (64 or 128 bits), we dropped the memoized hashes. In
fact, the buckets in the tree table are so small that we were even able to remove the
locking bit from the hash table, because the atomic CAS can operate on entire buckets.
The appropriate size of the buckets in the tree table is discussed in[Section 3.4]

3.3.3 References in the Open Set

Now that tree compression reduces the space required for state storage, we observe that
the open sets of the parallel reachability algorithm can become a memory bottleneck
[LPW1l1a]. A solution is to store references to the root tree node in the open set as

illustrated by which is a modification of [Line[4{7) from [Algorithm 3.1]

while (ref := S;;.get())
state := tree_get(DB, ref)
for (succ € NEXT-STATE(state))
(newref, found) := tree_find_or_put(DB, succ)
if (—found)
Sia-put(newref)

Algorithm 3.5: Reachability analysis algorithm with references in the open set.

The tree_get function is shown in It reconstructs the vector from a

reference. References are looked up in fable using the table_get function, which returns
the tuple stored in the table. The algorithm recursively calls itself until k = 1; at this
point ref_or_val is known to be a slot value — it is not a reference — and is returned as
vector of size 1. Results then propagate back up the tree and are concatenated on|[Cine[7]
until the full vector of length k is restored at the root of the tree.
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proc int[| tree_get(CTree(table k), val_or_ref)
if (k = 1)
return [val_or_ref]
[R;, R, := table_get(table, val_or_ref)
V; = tree_get(CTree(table,[%/2]), R;)
V, := tree_get(CTree(table,|¥/2|), R,)
return concat(V;, V;)

Algorithm 3.6: Algorithm for tree vector retrieval from a reference

3.3.4 Incremental Tree Database

New states are generated by calling the NEXT-STATE function on found states (starting
from the initial states). Often states are very similar due to locality in the model. In the
example below, only one slot value has changed, which is not uncommon:

NEXT-STATE((3,5,5,4,1,3)) = {(3,5,9,4,1,3)}

The time complexity of the tree compression algorithm, measured in the number of
hash table accesses, is linear in the number of state slots (k — 1 lookups are performed:
one at each tree node). However, because of today’s steep memory hierarchies these ran-
dom memory accesses are expensive. Luckily, the same principle that tree compression
exploits to deliver good state compression, can also be used to speedup the algorithm:
The only tuples that need to be inserted into the tree table are the ancestors of leaves
corresponding to slots that actually changed with respect to the previous state. For a
state vector of size k, the number of table accesses can be brought down from k — 1 (the

NEXT-STATE
_—

(3,5,5,4,1,3)

<3’579747 173>

Figure 3.9: Incremental insertion of a vector in the tree database.
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total number of nodes in a tree) to ¢ x log, (k) (the height of the tree) assuming ¢ < k
slots changed. But likely fewer than ¢ x log, (k), because the changed slots can be close
to each other in the tree (due to shared paths to the root).

Hence our goal is here to find/put a vector V in the tree database, while reusing the
computations used to find/put its predecessor P, i.e. V € NEXT-STATE(P), as much as
possible. So to avoid looking up P again, we need to store all the computed references
at the different (virtual) tree nodes. In other words, we must not only keep P in the open

set of but the entire tree associated with it, as shown in
presents an incremental tree update for the example considered above.

presents a reference tree structure that can be used for this purpose:
the RefTree. The associated ref_tree_create function creates an empty reference tree
with only L values in the tree nodes and leaves. The _L value is meant to be different
from the slot values in a vector V, so that the incremental procedure can be initiated (the
initial states in [Algorithm 3.1 have no predecessors). While we use the large RefTree
structure with additional pointers and length attributes to clarify the algorithms, it is
hardly needed to store the full structure in the open set. In fact, a short vector that con-
catenates the k — 1 tuples in the tree suffices to represent the whole RefTree (assuming
the fixed length & is known).

type RefTree = RTree(RefTree left, RefTree right, int k, int ref)|Leaf(int v,bool C)

proc RefTree ref_tree_create(k)
if (k= 1)
return Leaf( L)
left := ref_tree_create([*/2])
right := ref_tree_create(|%/2])
return RTree(left, right, k, 1)

Algorithm 3.7: RefTree structure to store all tree.

presents the incremental variant of the tree_find_or_put function.

The callee has to supply as additional argument an reference tree of the predecessor P
of V (V € NEXT-STATE(P)). Or an empty reference tree created with ref_tree_create,
if V € initial_states. Instead of returning a tuple with a reference (and a Boolean),
tree_find_or_put now returns a tuple with a complete reference tree for V, which can in
turn be used for incrementally storing any direct successor of V. The Boolean in the
returned tuple now indicates whether the part of the vector V that is associated with the
current subtree is equivalent to that same part in the predecessor vector P (see|Line|3).
This Boolean is used on as a condition for the hash table access; if the left or
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proc (RefTree, bool) tree_find_or_put(CTree(table,k), V, Leaf(val))
assert (|V|=1)
return (Leaf(V[0], V[0] = val))

proc (RefTree, bool) tree_find_or_put(CTree(table,k), V, RTree(left,right,l,ref))
assert (|V|=1)
assert ([ <kAIl>0)

(Ry, By) :=tree_find_or_put(CTree(table,k), Inalf(V'), left)

(R, By) := tree_find_or_put(CTree(table,k), rhalf(V'), right)
if (B; AB;) > Are all descendant leaves unmodified (see?
return (RTree(R;,R,,l,ref), true) > Return reference from predecessor
else > If a descendant leaf is modified:
(R, _) := table_find_or_put(table, (R;,R,)) > Find/put tuple in table
if (V| =k) > The recursion returned at the root call
return (RTree(R;,R,,,R), —table_try_tag(R)) > Is the root new?
else return (RTree(R;,R,,L,R), false) > Return new reference and false

Algorithm 3.8: ReferenceTree structure and incremental tree_rec function.

the right subvectors are modified, then the returned reference tree is updated with a new
reference that is looked up in table at[Cine[I3]

Notice that at the root node, when k = |V |, the algorithm returns a different Boolean,
indicating whether the tree root is new or not, as deduced from the tag bit discussed
above. This difference stems from the fact that the initial callee is the reachability algo-
rithm, which is interested in knowing whether V' was already in the database, whereas
the recursive calls require information on similarities between V and P.

The incremental tree_find_or_put function changed its interface with respect to[Al]
[gorithm 3.4] [Algorithm 3.9|presents a new search algorithm (Cine[d}{7)in[ATgorithm 3.T)
that also records the reference tree in the open set. RefTree refs has become an input
of the tree database, which returns a new RefTree new_refs to be stored along next in
the open set. For simplicity, we store both the vector and the reference tree in the open
set, while in fact the first can be reconstructed from the latter. (In fact, when storing the
reference tree succinctly in an array, as discussed above, the vector can be read directly
from this array.) We measured the speedup of the incremental algorithm compared to
the original (for the experimental setup see [Section 3.5). [Figure 3.10| shows that the
speedup is linearly dependent on log, (k), as expected.

Because the internal tree node references are stored, increases the

size of the open set by a factor of almost two. This is not of major concern, as the open
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3.3 Tree Database

while ((prev, refs) = S;;.get())
for (next € NEXT-STATE(prev))
(new_refs, found) = tree_find_or_put(DB, next, refs)
if (—found)
Sia-put((next, new_refs))

Algorithm 3.9: Reachability analysis algorithm with incremental tree database.

sets could further be reduced by storing and retrieving it piecemeal to disk [HWO7].
For breadth-first search, the access patterns in the open set are regular enough to do
this without overhead. To still support other search orders, we can either modify the

tree_get function in to also return the reference trees, or the tree get
function can be integrated into the incremental algorithm (Algorithm 3.8). (We do

not present these algorithm algorithms here as they are easy to derive from the above
algorithms.) While it seems that the additional lookups required to reconstruct reference
trees for predecessor vectors mitigate the benefits of the incremental method, it turns out
that often the tuples for the predecessor are still cached: We measured little slowdown
when doing this reconstruction before generating all successors of a state at once (about
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Figure 3.10: Speedup of [Algorithm 3.8|wrt. [Algorithm 3.4{

89




10% across a wide spectrum of input models)@ Alternatively, as a trade-off, we could
decide to lower the cutoff point in the tree, and store multiple references occurring at a
certain tree depth x < log, k in the open set. This latter approach was used in [Blo+08a].

3.4 Analysis of Compression Ratios

In the current section, we establish the worst-case and the best-case compression ratio
for hash tables, the tree database and the process table (CoLLAPSE compression). We
make the following reasonable assumptions about their dimensions:

o The respective database stores a set S of n = | S| state vectors of k slots@
e The size of a reference, or index, in the table is w bits.

e The size of the slot is u bits, with # < w, so we can store a slot in the same space
as a reference in the table@ (Hence, the state-vector universe is: 2'%.)

e The number of processes in CoLLAPSE compression is 1 < p <k.
e Keys can be stored without overhead in tables@

e We only count occupied table buckets, omitting the space reserved for empty
buckets 3]

e kis a power of 2@

As explained in the footnotes, most of these assumptions are introduced to simplify
the model, while others reflect the requirements imposed by implementation details,
such as the way that references are implemented.

3.1 For this reason, tree compression with references on the stack has become the default state storage
method in the LTSmin model checker [LPW11a; | BPW10].

32The fixed length of state vectors does not prevent us from model checking more dynamic systems, as
we can safely over-approximate this length. The good compressions and performance of incremental tree
compression ensure that the overhead does not matter much, as demonstrates.

33 As noted above, complex slots values can easily be hashed in separate tables to obtain unique values.

34 This assumption holds for tree tables proposed here, as we explain at the end of the current section,
but is less realistic for hash tables storing large state vectors as explained in Since we compare
compressions with respect to hash table storage, this is a safe approximation.

3-5Especially in the case of model checking, this results in a reasonable indication of the compressed
sizes, because the size of the checked system depends by and large on the number of entries we can store in
the closed set of the reachability algorithm. In other words, our goal is to squeeze as many states as possible
in the available memory.

36Solely assumed to simplify the formulae below.
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Figure 3.11: From left to right: a hash table, a (concurrent) tree table and a process
table with their dimensions.

[Figure 3.11] provides an overview of the different data structures and the stated as-
sumptions about their dimensions. Note that buckets are always drawn vertically. The
original sequential tree database is not drawn, but can be considered as set of k — 1
tables which each require 3 w-bit units per bucket as shown in

3.4.1 Tree Database

To deduce the average compressed state vector size, we will reason on the number of
tuple entries stored in a tree database (sequential or concurrent), containing the n state
vectors. For simplicity, we disregard the maximal sharing property that was discussed
in the previous section. This over-approximates the memory usage of the concurrent
tree and thus is a fair assumption. This simplifies the case of the concurrent tree, since
its merged table will contain equally many entries as are stored across all tables in the
original sequential tree. At the end of the current section, we discuss the possible effects
of maximal sharing on the worst- and best-case compression. The number tuple entries
stored in the tree database depends on: n, k, and the combinatorial structure of S. The
latter is fixed to arrive at the following theorems:

Theorem 3.2. In the worst case, the tree database requires k — 1 tuple entries per state
vector regardless of the number of vectors [Blo+08d).




Proof. Consider the case where all states s € S have k identical slot values:
S={,... xk...,v) |ve{l,...,n}}. No sharing can occur between the state vectors
in the database, so for each state we store k — 1 tuples at the tree nodes. O

Corollary 3.1. In the worst case, the concurrent tree database in re-
quires less than 2k(w + 1) bits per state vector regardless of the number of vectors in
the database.

Proof. According to the tree table contains k — 1 tuple entries per state.
These entries each require 2w + 1 bits. And: (k—1) x 2w+ 1) =2kw+k—2w—1<

2kw + 2k = 2k(w+ 1). O

Corollary 3.2. In the worst case, the sequential tree database in[Algorithm 3.3|requires
3kw bits per state vector regardless of the number of vectors in the database.

Proof. According to the tree table contains k — 1 tuple entries per state.
These entries each require 3w bits. O

The best-case scenario is easy to comprehend from the effects of a good combi-
natorial structure on the size of the parent tables in the (sequential) tree. If a certain
tree table contains d tuple entries, and its sibling contains e entries, than the parent can
have up to d X e entries (all combinations, i.e. the Cartesian product). In a tree that is
perfectly balanced (d = e for all sibling tables), then the root node has » entries (1 per

state), its children have /n entries, its children’s children /n, etc. [Figure 3.12|depicts

this scenario.
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Figure 3.12: Optimal entries per tree node level.



Hence there are a total of n+2v/n+4¥/n+ ... (log, (k) times) ... +2/k 24/n tuple
entries. Dividing this series by n gives a series for the expected number of tuple en-

) logy (k)—1 z\i/;l . .
tries per state: Y 2. It hard to see where this series exactly converges, but
i=0

[Blo+08al] established however a useful upper bound.

Theorem 3.3. In the best case, the tree database requires a total of n++/n(k—2) tuple
entries to store n vectors [Blo+08a)].

Proof. In the best case, the root tree table contains n entries and its children contain /n
entries. The entries in the root’s children represent vectors of size /2. To obtain an upper
bound, we assume that the roots children store their \/n vectors of size ¥/2 as in the worst
case. For one child, according to[Theorem 3.2] this requires #/2— 1 entries per state in all
of the child’s descendants (including entries in the child’s own table). The total number
of entries in all tree tables, hence is bounded by: n+2/n(k/2—1) =n++/n(k—2). O

We simplify this upper bound below to obtain a better intuition on the expected
experimental results. But first, we provide a lemma that can be used as a guideline for
design decisions concerning the implementation of the tree database.

Lemma 3.1. In the best case, the total number of tuple entries [ in all descendants of
root table is negligible (I < n), assuming a relatively large number of vectors is stored:
n> k> 1

Proof. If the number of tuple entries in a tree table equals n, then the total number of

entries in all its descendants is bounded by [ = /n(k—2) (see(Theorem 3.3)). Replacing

k with /n, we learn that [ < n. O

This shows that the entries in the root table (or the entries with is_also_root tag in
the concurrent tree), dominate.

Corollary 3.3. In the best case, the tree databases requires 1 + € tuple entries per state
to store n vectors, assuming a relatively large number of vectors is stored: n>> k> >
i

(The concurrent tree uses 2w -+ 1 bits per entry and the sequential tree 3w bits per entry.)

Proof. Follows from|[Cemma 3.1] O

37The universe of all possible vectors is 2K large (vectors are ku bits long). We are interested in storing a
very small subset of this universe. In practice, we encounter around 10° states with often no more than a few
hundreds of slots.




3.4.2 Collapse Process Table

Since the leaves of the process table are directly connected to the root, the compression
ratios are easier to calculate. To yield optimal compression for the process table, a
more restrictive scenario, than described for the tree above, needs to occur. We require
p symmetrical processes with each a local vector of m = k/p. Related slots may only
lay within the bounds of these processes, take S; = {(v,...,v) [ve {l,...,m}} fori e
{1,...,p}. Each combination of different local vectors is inserted in the root table (also

ifS;={(s,1,...,1) | se{l,...,m}}).

Theorem 3.4. In the best case, the process table requires a total of pw + € bits to store
n vectors.

Proof. In the best case, the root tree table contains » entries and its children contain {/71
entries. The former requires pw bits per entry, and the latter ¥/pu bits per entry. The total
size of the process table becomes npw -+ {/nk/pu bits. For relatively large n>> k? > 1
and large p > 1, this approaches pw + € bits per state. O

In the worst case, we can take the same scenario as for the tree.

Theorem 3.5. In the worst case, the process table requires a total of pw + ku bits per
state regardless of the number of vectors it stores.

Proof. No sharing occurs in the process table if all states s € S have k identical slot
values: S = {(v,---xk...,v) |ve{l,...,n}}. Therefore, the n pw-sized entries are
required in the root table, and n &/pu-sized entries in all p process tables. O

3.4.3 Comparison Against Plain Hash Table Storage

[Table 3.1]lists the achieved compressed sizes for states, as stored in a normal hash table,
a process table and a tree database. In the hash table, the size of slots might be small
(u < w), which can be used to somewhat condense the states, hence the factor on k.
The same holds for the process tables in CoLLAPSE compression. Nonetheless, both
techniques use memory proportional to the state vector size or the number of processes
in the model. For the rest, these results follow directly from the presented theorems.
The worst case of the process table is clearly not as bad as the worst case achieved
by the tree. On the other hand, the best-case scenario is not as good as that from the tree,
which is the only technique that has the potential compress states to a constant number
of references. We also saw that the tree can reach near-optimal cases easily, placing
few constraints on related slots (on the same half). Therefore, we can expect the tree to
outperform the compression of process table in more cases, because the latter requires



Table 3.1: Theoretical compression bounds for the (sequential and concurrent) tree
database, and the process table, compared to plain hash table storage (showing com-
pression as the number of w-bit units used per state).

Structure Worst case Best case
Hash table (ideal) k ok
Process table (COLLAPSE) p+ik pt+e
Sequential tree database 3k—-3 3+¢
Concurrent tree database (Algorithm 3.4) 2k—2 2+¢€

more restrictive conditions. Namely, related slots can only be within the fixed bounds
of the state vector (local to one process).

Maximal sharing invalidates the worst-case analysis for the concurrent tree database,
but other sets of vectors can be thought up to still cause the same worst-case size. In
practice, we can also expect little gain from maximal sharing, since the likelihood of
similar subvectors decreases rapidly the larger these vectors are. For combinatorial S,
we can expect little gain from maximal sharing, since the number of tuples entries in
descendant tables are insignificant anyway compared to the root tuples (see[Lemma 3.T)).

3.4.4 Implementation Details

For the implementation of the concurrent tree database, the following requirements play
arole in determining the reference or index size w:

e as illustrated in the number of tuples that the tree table can fit is
bound by 2" (as we are using w-bit sized references),

o the parallel algorithm uses 1 extra tag bit per tuple entry,

e the atomic CAS instruction required to implement only works on
8, 16, 32 or 64 bit words (64-bit processors often provide an additional 128-bit
word CAS),

e the CAS operands need to be aligned at word-sized boundaries in memory, elim-
inating the possibility to use bucket sizes that are not a power of two, and

e the tree needs to accommodate as many vectors as possible in the available main
memory of modern systems (up and around 64GB).




Table 3.2: The compressed state sizes, max number of states storable and max usable
memory for the tree tables, for different w and the best-case compression scenario.

Best case Max. states |Usable memory (max)
w=32 w=64 w=32w=064 w=32 w=064
Sequential tree database |> 12 byte > 24 byte| > 232 > 264 |>> 48GB > (48GB)?
Concurrent tree database| > 8 byte > 16 byte| <23 <262 | 16GB  (16GB)?

The considerations lead to the logical conclusion that the only feasible reference
sizes are w = 32 bits and w = 64 bits. [Table 3.2]summarizes the effects of these choices
on both the concurrent and the sequential tree table. From the second columns we see
that the concurrent tree can compress states to almost 8 byte, but in that case can only
store less than 23! states filling up 16GB of memory, only a part of the available memory
on modern machines. [Lemma 3.1|ensures that the number non-root tuple entries do not
have to be a serious limitation to the number of states stored in the tree. It cannot even
store 232 states, because the table needs to accommodate the tag bit (see .
Using 64-bit references these limitations are remedied, but the compressed sizes now
surpass the memory use of the sequential database with 32-bit references. The latter
also shows the surprising result that it can store more than 232 states. This follows from
the fact that the root table is separate and can grow beyond 232 entries because it is not
referenced inside any tree table (only on the local open sets in the reachability algorithm,
where we can use e.g. 5 byte references).

It would be tempting to also separate at least the root table in the concurrent tree
database. However, since we do not know up front how well the compression ratio will
be, or in other words whether applies, resizing would be required. In the
previous section, we avoided resizing in the concurrent tree as a design decision with
the aim of improving scalability. Now that we have merged tables, resizing might be
possible again by using the tree_ref function to reconstruct states and reinsert them in
a larger table (rehashing the tuples). While indeed technically possible, it still seems
infeasible to implement because maximal sharing prevents incremental rehashing of
reference trees, as it might be the case that the rehashed tuples are no longer shared.
For these reasons, we decided to implement a concurrent tree with 31-bit references
(tree table buckets of 64 bits of which 2 x 31 bits are used for references and 1 bit is
used for the tag). This way, we already can accommodate many more (large) states
than in a plain hash table, and use the remaining memory for in-memory open sets and
worst-case compression scenarios.



3.5 Experiments

We performed experiments on an AMD Opteron 8356 16-core (4 x 4 cores) server with
64 GB RAM, running a patched Linux 2.6.32 kernelfig] All tools were compiled using
Gce 4.4.3 in 64-bit mode with high compiler optimizations (-03).

We measured compression ratios and performance characteristics for the models
of the BEem database [Pel07] with three tools: DiVINE 2.2, SpiN 5.2.5 and our own
model checker LTSmin [BPWI0; [LPW11a]. LTSmiN implements [Algorithm 3.4 using
a specialized version of the hash table from|Chapter 2|which inlines the rags as discussed
at the end of Special care was taken to keep all parameters across the
different model checkers the same. The size of the hash/node tables was fixed at 228
elements to prevent resizing and model compilation options were optimized on a per
tool basis as described in We verified state and transition counts with the
Beewm database and D1VINE 2.2. The complete results with over 1500 benchmarks are
available online [Laall[].

3.5.1 Compression Ratios

For a fair comparison of compression ratios between Spin and LTSmiIN, we must take
into account the differences between the tools. The BEEM models have been written in
DVE format (D1VINE) and translated to PRoMELA. The translated BEEm models that
SpiN uses may have a different state vector length. LTSmin reads DVE inputs directly,
but uses a standardized internal state representation with one 32-bit integer per state slot
(state variable) even if a state variable could be represented by a single byte. Such an
approach was chosen in order to reuse the model checking algorithms for other model
inputs (like mCRL, mCRL2 and DiVINE [BPWO09]). Thus, LTSmiN can load BEEm
models directly, but blows up the state vector by an average factor of three. Therefore,
we compare the average compressed state vector size instead of compression ratios.

shows the uncompressed and compressed vector sizes for CoLLAPSE and
tree compression. Tree compression achieves better and almost constant state compres-
sion than CoLraPsE for these selected models, even though original state vectors are
larger in most cases. This confirms the results of our analysis.

We also measured peak memory usage for full state-space exploration. The benefits
with respect to hash tables can be staggering for both CoLLAPSE and tree compression:
while the hash table column is in the order of gigabytes, the compressed sizes are in the
order of hundreds of megabytes. An extreme case is hanoi . 3, where tree compres-

38https://bugzilla.kernel.org/show_bug.cgi?id=15618), see also Chapter 2}
39The hash table size is calculated on the base of the LTSMIN state sizes



https://bugzilla.kernel.org/show_bug.cgi?id=15618

Table 3.3: Original and compressed state sizes and memory usage for LTSmin with
hash table (Table), CoLLAPSE (Spin) and tree compression (7ree) for a representative
selection of all benchmarks.

Model Orig. State [Byte] Compr. State [Byte] Memory [MB]

SpPIN Tree SpiN Tree Tabl CoLrLaprsg  Tree
at.6 68 56 36.9 8.0 8,576 4,756 1,227
firewire tree.b 68 56 36.9 8.0 6,550 - 94
iprotocol.6 164 148 39.8 8.1 5,842 2,511 322
at.5 68 56 37.1 8.0 1,709 1,136 245
bakery.7 48 80 274 8.8 2216 721 245
hanoi.3 116 228 112.1 13.8 3,120 1,533 188
telephony.7 64 96 31.1 8.1 2,011 652 170
anderson.6 68 76 31.7 8.1 1,329 552 140
frogs.4 68 120 732 82 1,996 1,219 136
phils.6 140 120 58.5 9.3 1,642 780 127
sorter.4 88 104 39.7 8.3 1,308 501 105
elev_plan.2 52 140 67.1 9.2 1,526 732 100
telephony.4 54 80 28.7 8.1 938 350 95
fischer.6 92 72 437 8.4 571 348 66

sion, although not optimal, is still an order of magnitude better than COLLAPSE using
only 188 MB compared to 1.5 GB with CoLLAPSE and 3 GB with the hash table.

To analyze the influence of the model on the compression ratio, we plotted the in-
verse of the compression ratio against the state length in The line repre-
senting optimal compression is derived from the analysis in and is linearly
dependent on the state size (the average compressed state size is close to 8 bytes: two
32-bit integers for the dominating root node entries in the tree).

With tree compression, a total of 279 BEem models could each be fully explored
using a tree database of pre-configured size, never occupying more than 4 GB memory.
Most models exhibit compression ratios close to optimal; the line representing the me-
dian compression ratio is merely 17% below the optimal line. The worst cases, with a
ratio of three times the optimal, are likely the result of combinatorial growth concen-
trated around the center of the tree, resulting in equally sized root, left and right sibling
tree nodes. Nevertheless, most sub-optimal cases lie within 200% of the optimal, sug-
gesting only one “full” sibling of the root node. (We verified this.)
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Figure 3.13: Compression ratios for 279 models of the Beem database are close to
optimal for tree compression.
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Parallel Recursive State Compression for free

10.00 1
X
x x X
X %
X

m z 2 x B
€ ¥ W x % x
8 1.00 .. § x % < oy x
2 - i&x“x
o N - e « X
k-] . X
2 . ’&8‘3&
(7]
< o' X
g 0.10 - "
° o -
© X SPIN COLLAPSE

= Tree compression

——optimal 8/k Lee et
0.01 Lo median 9.6/k , e,
10 100 1000
state length (byte)

Figure 3.16: Compression ratios for 279 models of the BEEm database are close to
optimal for tree compression.

shows compressed state size of tree compression. The figure shows
more clearly how many cases come close to the optimal compression. We also see that
cases with bad compression are distributed evenly over the state length axis.

[Figure 3.T6]compares the compressed sizes of CoLLAPSE and tree compression. (We
could not easily compare compressed state space sizes due to differing number of states
for some models). Tree compression performs better for all models in our data set. In
many cases, the difference is an order of magnitude. While tree compression has an
optimal compression ratio that is four times better than CoLLAPSE’s (empirically es-
tablished), the median is even five times better for the models of the BEEm database.
Finally, as expected (see [Section 3.4), we measured insignificant gains from the intro-
duced maximal sharing.

3.5.2 Performance & Scalability

We compared the performance of the tree database with a hash table in DiVINE and
LTSmIN. A comparison with SpiN was already provided in[Chapter 2] For a fair compar-
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ison, we modified a version of LTSMI@ to use the (three times) shorter state vectors
(char vectors) of DIVINE directly. shows the total runtime of 158 BEEm
models, which fitted in machine memory using both DIVINE and LTSmiN. On average
the runtime performance of tree compression is close to a hash table-based search (see

Figure 3.17(a)). However, the absolute speedup in shows that scalability

is better with tree compression, due to a lower memory footprint.

compares the sequential and multi-core performance of the fastest hash
table implementation (LTSmin lockless hash table with char vectors) with the tree database
(also with char vectors). The tree matches the performance of the hash table closely.

For both, sequential and multi-core, the performance of the tree database is nearly
the same as the fastest hash table implementation, however, with significantly lower
memory utilization. For models with fewer states, the tree database outperforms the
hash table, undoubtedly due to better cache utilization and lower memory bandwidth.
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Figure 3.17: Performance benchmarks for 158 models with DiVINE (hash table) and
with LTSMIN using tree compression and hash table.

3-10this experimental version is distributed separately from LTSmin, because it breaks the language-
independent interface.



3.6 Conclusions

First, the current chapter presented an analysis and experimental evaluation of the com-
pression ratios of tree compression and CoLLAPSE compression, both informed com-
pression techniques that are applicable in on-the-fly model checking. Both analysis
and experiments can be considered an implementation-independent comparison of the
two techniques. CoLLAPSE compression was considered the state-of-the-art compres-
sion technique for enumerative model checking. Tree compression was not evaluated as
such before. The latter is shown here to perform better than the former, both analytically
and in practice. In particular, the median compression ratio of tree compression is five
times better than that of CoLLAPSE on the BEEM benchmark set. We consider this result
representative to real-world usage, due to the varied nature of the BEEM models: the set
includes models drawn from extensive case studies on protocols and control systems,
and, implementations of planning, scheduling and mutual exclusion algorithms [Pel11].

Furthermore, we presented a solution for parallel tree compression by merging all
tree-node tables into a single large table, thereby realizing maximal sharing between
entries in these tables. This single hash table design even saves 50% in memory because
it exhibits the required stable indexing without any bookkeeping. We proved that the
consistency is maintained and use only one bit per entry to parallelize tree insertions.
Lastly, we presented an incremental tree compression algorithm that requires a fraction
of the table accesses (typically O(log,(k)), i.e., logarithmic in the length of a state
vector), compared to the original algorithm.

Our experiments show that the incremental and parallel tree database has the same
performance as the hash table solutions in both LTSmin and D1VINE (and by implication
SPIN, as confirms). Scalability is also better. All in all, the tree database
provides a win-win situation for parallel reachability problems.

Discussion. The absence of resizing could be considered a limitation in certain appli-
cations of the tree database. In model checking, however, we may safely dedicate the
vast majority of available memory of a system to the state storage.

The current implementation of LTSmIN [LPW 11a]] supports a maximum of 23! tree
nodes, yielding about 2 x 10° states with optimal compression. In the future, we aim
to create a more flexible solution that can store more states and automatically scales the
number of bits needed per entry, depending on the state vector size. Low-level issues
have hold us back thus far from implementing this, i.e., the ordering of multiple atomic
memory accesses across cache line boundaries behave erratically on certain processors.

While the current chapter discusses tree compression mainly in the context of reach-
ability, it is not limited to this context. For example, on-the-fly algorithms for the ver-



ification of liveness properties can also benefit from a space-efficient storage of states
as demonstrated by Spin with its CoLLAPSE compression.

Future work. A few options are still open to improve tree compression. Static analy-
sis of the dependencies between transitions and state slots could be used to reorder state
slots and obtain a better balanced tree, and hence better compression (see[Section 3.4).
Much like the variable ordering problem of BDDs [[Bry86], finding the optimal reorder-
ing is an exponential problem (a search through all permutations). While, we are able
to improve most of the worse cases by automatic variable reordering, we did not yet
find a good heuristic for at least all BEEM models.

Finally, it would also be interesting to generalize the tree database by accommodat-
ing for the storage of vectors of different sizes.

Final remark. The small tree node entries cover a limited universe of values: 142 X
log, (n). This is an ideal case to employ key quotienting using Cleary table [Cle84]| or
very tight hash tables [GV03|]. A solution for this is presented in the subsequent chapter.
The result is a parallel tree database implementation that in the (common) optimal case
uses only one integer (4 bytes per state), halve of the memory requirements of the current
tree database.







A Parallel Compact Hash Table

Alfons Laarman, Steven van der Vegt

Abstract

We present the first parallel compact hash table algorithm. It delivers high per-
formance and scalability due to its dynamic region-based locking scheme with only
a fraction of the memory requirements of a regular hash table.

About this chapter: The current chapter is based on the paper “A Parallel Compact
Hash Table”, which was published at MEMICS 2011 |VL12].

The original paper [VL12] remains largely the same, modulo some small textual im-
provements. We removed the general introduction. We added an extra section de-
tailing the use of the concurrent Cleary table in the concurrent tree database from
This section requires no new experiments, as we can theoretically show
that the compression ratio of the new Cleary tree is directly related to the compres-
sions obtained with the tree (Section 3.5|demonstrates that most results lie close to
the optimum).

We also added a section that establishes an information-theoretic lower bound on the
storage requirements for typical model checking problems. We show that the Cleary
compact tree can actually reach this bound in theory when compression is optimal.
The experiments from already demonstrated that this is more often the
case than not in practice.

4.1 Introduction

Data structures, like hash tables, are crucial building blocks for these systems and many
have been parallelized [[C1i07; HSOS]| to prevent a multi-core crisis. A hash table stores
a subset of a large universe U of keys and provides the means to lookup individual keys
in constant time. It uses a hash function to calculate an address / from the unique key.



The entire key is then stored at its hash or home location in a table (an array of buckets):
T'[h] < key. Because often |U| > |T|, multiple keys may have the same hash location.
We can handle these so-called collisions by calculating alternate hash locations and
searching for a key in the list of alternate locations, a process known as probing.

In the case that |[U| < |T|, a hash table can be replaced with a perfect hash function
and a bit array, saving considerable memory. The former ensures that no collisions can
occur, hence we can simply turn “on” the bit at the home location of a key, to add it to
the set. Compact hashing [Cle84; DM09] generalizes this concept for the case |U| > |T|
using a technique called key quotienting. Hashing in T is done using the key’s quotient,
while T stores only the part of the key that was not used for hashing: the remainder.
The complete key can now be reconstructed from the value in 7 and the home location
of the key. If, due to collisions, the key is not stored at its home location, additional
information is needed. Cleary [[Cle84] solved this problem with very little overhead by
imposing an order on the keys in 7' and introducing three administration bits per bucket.

The bucket size b of Cleary compact hash tables is thus dependent on U and T
as follows: b =w —m+ 3, with the key size w = [log2(|U|)]| and m = [logz2(|T1)].
Assuming that all the buckets in the table can be utilized, the compression ratio obtained
is thus close to the information-theoretic lower bound of storing a subset of U in a list
T, where byprimar = w—m+ 1 [GVO3]. Note that good compression ratios (%) are only
obtained when m is significant with respect to w.

Problem description. Compact hashing has never been parallelized, even though
it is ideally suited to be used inside more complex data structures, like tree tables (see
and binary decision diagrams (BDDs) [DLP13]|. Such structures maintain
large tables with small pieces of constant-sized data, like pointers, yielding an ideal m
and w for compact hashing. But even more interesting than obtaining some (constant-
factor) memory reductions, is the ability to store more information in machine-sized
words, for efficient parallelization depends crucially on memory alignment and low-
level operations on word-sized memory locations [[Cli07; LPW10a].

Contributions. We present an efficient scheme to parallelize both the Cleary table
and the order-preserving bidirectional linear probing (BLP) algorithm that it depends
upon. The method is lockless, meaning that it does not use operating system locks,
thereby providing the performance required for use in high-throughput environments,
like in BDDs, and avoiding memory overhead.

Our algorithm guarantees read/write exclusion, but not on the lowest level of buck-
ets, as in [CliO7; [LPW10a], nor on fixed-size regions in the table as in region-based
locking, aka striped locking, but instead on the logical level of a cluster: a maximal



subarray T'[i...j] such thatVx:i <x < j = T[x].occ ,where T [x].occ denotes a filled
bucket. We call this novel method: dynamic region-based locking (DRL).

Finally, we show how the Cleary table can be used in tree compression to almost
halve the compressed sizes for state vectors in model checking. An information-theoretic
model for the state entropy demonstrates that this compression is close to the optimum.

4.2 Background

In the current section, we explain the Cleary table and the BLP algorithm it uses. Fi-
nally, we discuss some parallelization approaches that have been used before for hash
tables and the issues that arise when applying them to the Cleary table.

For this discussion, the distinction between open-addressing and chained hash ta-
bles is an important one. With open addressing, the probing for alternate locations is
done inside the existing table as is done in BLP and hence also in Cleary tables. While
chained or closed-addressing hash tables resolve collisions by maintaining (concurrent)
linked lists at each location in the table.

4.2.1 Bidirectional Linear Probing

The simplest form of open addressing is linear probing (LP): alternate hash locations
in the table are calculated increasing by one to the current location. While this probing
technique provides good spatial locality, it is known for producing larger clusters, i.e.,
increasing the average probing distance [CLiO7].

BLP [|AK74] mitigates the downside of LP, by enforcing a global order on the keys
in the buckets using a monotonic hash function: if k; < ky then hash(k;) < hash(ks).
Therefore, the lookup of a key k boils down to: compare the k to the bucket at the home
location A, if T'[h] > k, probe left linearly (%' <— h— 1), until T[/'] = k. If k is not present
in the table, the probe sequence stops at either an empty bucket, denoted by =T [1'].occ,
or when T[H'] < k. If T[h] < k, do the reverse.

To maintain order during an insert of a key, the BLP algorithm needs to move part
of a cluster to the left or the right in the table, thereby making space for the new key at
the correct (in-order) location. This move is usually done with pair-wise swaps, start-
ing from the empty bucket at one end of the cluster. Therefore, this is referred to as
the swapping operation. For algorithms and a more detailed explanation, please refer
to [AK74;|Vegl1]].




4.2.2 A Compact Hash Table Using the Cleary Algorithm

As explained in Cleary’s compact hash table [Cle84] stores only the re-
mainder of a key in 7. With the use of the sorting property of the BLP algorithm and 3
additional administration bits per bucket, the home location 4 of the remainder can be
reconstructed, even for colliding entries that are not stored at their home location. For
this to work, the hash function needs to be reversible in addition to being monotonic.
[Cle84] describes some solutions for this. We will use hash™" for the reversed version.

The rem function is the complement of the monotonic hashing function and calcu-
lates the remainder, e.g., rem(x) = x%10 and hash(x) =x/ 10@ A group his asequence
of successive remainders in 7 with the same home location /. All adjacent groups in 7'
form a cluster, which by definition is enclosed by empty buckets (see[Section 4.T).

The first administration bit occ is used to indicate occupied buckets. The virgin bit
is set on a bucket 4 to indicate the existence of the related group /2 in 7. And finally, the
change bit marks the last (right-most) remainder of a group, such that the next bucket
is empty or the start of another group.

shows the Cleary table with |T'| = 10 that uses the example hash and rem
functions from above. A group 4 is indicated with g;. Statically, keys can be recon-
structed by multiplying the group number by 10, and adding the remainder: key(j) =
group(T[j]) x 10+ T[j] = hash™" (group(T[}])) + T|[j]. For example, bucket 6 stores
remainder 8 and group(6) = 4, therefore key(6) = 4 x 104 8 = 48.

The algorithms maintain the following invariants [[Cle84]: the amount of change
and virgin bits within a cluster is always equal, and, when a virgin bit is set on a bucket,
this bucket is always occupied.

o<

rem| 7 | 9 3148|8019

Figure 4.1: Example Cleary table with 10 buckets containing 8 remainders, 2 clusters
and 4 groups, representing the keys: 7, 9, 33, 34, 38, 48, 60, 69. The upper two rows
of the buckets represent the virgin and the change bits. The occupied bit is not shown
(buckets without values are unoccupied).

4170 increase the performance of the hash function, it is common practice to apply an invertible ran-
domization function to the key before hashing it [AK74}|Cle84;|GVO03]. Throughout the current chapter, we
assume keys to be randomized.



The rIND function in makes use of these invariants as follows: it

counts the number of virgin bits between the home location £ and the left end of the
cluster in ¢ (see VCOUNT-LEFT). Since the last encountered virgin bit corresponds to the
left-most group, the group 4 can now be located by counting ¢ change bits to the right
(Line |13H17). The first iteration where ¢ = 1 marks that start of group i. Hence, the
algorithm starts comparing the remainders in 7'[j] with rem(k) at[Line[T4] and returns
FoUND when they are equal. Once ¢ becomes 0 again, the group 4 did not contain the
key, and Nor_rounD is returned at[Cine[T8]

Algorithm 4.1 Functions for finding (a) and inserting (b) a key in a Cleary table.

1: procedure VCOUNT-LEFT(}) Require: (3Ji: —T[i].occ) A —FiND(k)

2 c+0 > count variable 1: procedure puT(k)

3 while T'[].occ do 2: h < hash(k)

4 ¢+ c+Tlj].virgin 3: (j,¢) < vCOUNT-LEFT(h)

5 Jjej—1 4: T[j] + rem(k)

6 return j,c 5: T[j]-0cc + 1

7: procedure FIND(k) 6 Tlj J'Cha”g e<0

3 ]<—hash(k) 7: Whl.leC'?éOflO'

9 if ~T'[}].virgin then 8: if T[h].vzrgm Ae=1A
10: return NOT_FOUND >false T[j+1] > rem(k) then
11: (j,¢) < VCOUNT-LEFT( ) 10: return .

1 je it 11: c<—c—7.‘[]—|—1].c.hange
13: while ¢ £ 0AT[j].occ do 12: S,WAPQ‘[J +1L,T0D

14: if c = IAT[j] = rem(k) then '™ Jeitl

15: return FOUND >true 14 if T[h].virgin then

16: ¢ < c—T[j].change 15: T[j—1].change <0
17: jj+1 16: T[j].change < 1
18: return NOT_FOUND > false 17: T'[h].virgin « 1

The put function in inserts the remainder of k in the empty bucket
left of the cluster around # at and swaps it in place at (swap only
swaps the remainder and the change bit). In this case, in place means two things: within
group h as guaranteed by[Cine[7]and[Cine[8] and sorted by remainder value as guaranteed
by Furthermore, puT guarantees the correct setting of the administration bits.
First, the occ bit is always set for every inserted element at[Cine[5] Also, before return,
the virgin bit is always set for T[] (see|Line[8|and |Line[17).

To understand the correct setting of the change bits, we introduce an invariant: at




group(T|[j+1]) < h. Consequently, a return at [Line [10] means that the re-
mainder is not swapped to the end of group 4, therefore the change bits do not require

updating. On the other hand, if the while loop terminates normally, the remainder is
swapped to the end of group A, therefore the change bit needs to be set (Line[I6). If
group A already existed (T'[h].virgin = true), the previous last remainder of the group
needs to have its change bit unset (Cine[T3).

We illustrate put with an example. Inserting the key 43 into the table of
gives a h = hash(43) = 4 and rem(43) = 3. Searching for the empty bucket left of the
cluster at results in j = 2 and ¢ = 2, since there are two virgin bits in buckets
3 and 4. The remainder is initially inserted in T[2] (Linc[4}{6). At[Line[12]the remain-
der in bucket 2 is swapped with bucket 3 (the virgin bit remains unchanged). These
steps are repeated until j points to bucket 5. Then, at[Cine[TT|c becomes 1, indicating
group(T[j+1]) = h. In the next iteration (j' = j — 1), the condition at[Line[8}{9] holds,
meaning that the remainder is at its correct location: at the start of g4.

If instead, we were inserting the key 49, ¢ would have become 0, ending the while
loop with j = 6 (Cine[7), after swapping the remainder 9 to bucket 6. Because g4
already existed, the previous change bit (now on T [5]) is unset by Finally,
the change bit at bucket 6 is set by

To make groups grow symmetrically around their home locations and keep probing
sequence shorter, it is important that the put function periodically also starts inserting
remainders from the right of the cluster (not shown in the algorithm). Our experimen-
tal results confirm that a random choice between the two insert directions yields the
same probe distances as reportedly obtained by the optimal replacement algorithms
in [AK74].

4.2.3 Related Work on Parallel Hash Tables

In the current subsection, we recapitulate some relevant, existing approaches to paral-
lelize hash tables. With relevant, we mean parallel hash tables that can efficiently store
smaller pieces of data (remember, from the introduction, that the key size w should be
significant with respect to m for compact hashing to be effective). Furthermore, the
scalability should be good for high-throughput systems like inside BDDs.

We use the following abbreviations:

Many parallel hash table implementations are based on chaining. More advanced
approaches even introduce more pointers per bucket, for example: split-ordered lists [HSOS|,
Sec. 13.3], which: “move[s] the buckets among the [keys], instead of moving the [keys]
among the buckets”. While these kind of hash tables lend themselves well for maintain-
ing small sets in parallel settings like graphical user interfaces, they are less suited for
our goals for two reasons: (1) the pointers require relatively much additional memory



Abbr.|Meaning
LP |Linear Probing

BLP |Bidirectional Linear Probing
LHT |Lockless Hash Table

RBL |Region-Based Locking

DRL |Dynamic Region-based Locking
PCT |Parallel Cleary Table

compared to the small bucket sizes that are so typical for compact hashing and (2) the
pointers increase the memory working set, which is disastrous for scalability on modern
computer systems with steep memory hierarchies [LPW10a; |ClLi07].

Slightly more relevant to our cause is the use of operating system locks to make
access to a hash table (chained or open addressing) concurrent. One lock can be used
for the entire table, but this is hardly scalable. Alternatively, one lock can be used
per bucket, but this uses too much memory (we measured 56 bytes for posix locking
structures, this excludes any memory allocated by the constructor). A decent middle
way is to use one lock for a group of buckets. The well-known striped hash table
[HSO8, Sec. 13.2.2], does this for chained tables. To employ the same idea for an open-
addressing table, it does not make sense to ‘stripe’ the locks over the table buckets.
Preferably, we group subsequent buckets into one region, so that only one lock needs to
be taken for multiple probes. We dub this method region-based locking (RBL).

Lockless hash tables avoid the use of operating system locks entirely. Instead,
atomic instructions are used to change the status of buckets (“locking” in parentheses).
A lockless hash table (LHT) is presented in[Chapter 2] based on ideas from [CIi07]. It
uses open addressing with LP and even modifies the probe sequence to loop over cache
lines (“walking the line”) to lower the memory working set and achieve higher scalabil-
ity. For maximum scalability, only individual buckets are “locked” using one additional
bit; the only memory overhead that is required.

None of the above-mentioned methods are suitable for ordered hash tables, like BLP
and Cleary tables. First the regions in RBL are fixed, while the clusters in ordered tables
can be at the boundary of a region. While this could be solved with more complicated
locking mechanism, it would negatively affect the performance of RBL, which is already
meager compared to the lockless approaches (see Sec. {.6). The lockless approach, in
turn, also fails for ordered hash tables since it is much harder to “lock” pairs of buckets
that are swapped atomically. And even if it would be technically possible to efficiently




perform an atomic pairwise swap, it would severely increase the amount of (expensive)
atomic operations per insert discusses the complexity of the swapping
operations).

[Vegl1] introduced a lockless algorithm for BLP that “locks” only the cluster during
swapping operation. FIND operations do not require this exclusive access, for an ongoing
PUT operation can only cause false negatives that can be mitigated by another exclusive
FIND operation. However, this method is not suitable for the Cleary table, since its FIND
function is probe sensitive, because it counts the virgin and change bits during probing.
Therefore, it can cause false positives in case of ongoing swapping operations. The
current chapter is an answer to the future work of [Vegl1].

4.3 Dynamic Region-Based Locking

In the current section, we first present dynamic region-based locking (DRL): a locking
strategy that is compatible with the access patterns of both the BLP algorithm with its
swapping property and the Cleary table with its probe-sensitive lookup strategy. We
limit our scope to a procedure that combines the FIND and put functions, described in
the previous section, into the FIND-oR-PUT function, which searches the table for a key
k and inserts k if not found. The reason for this choice is twofold: first, it covers all
issues of parallelizing the individual operations, and second, the FIND-OR-PUT Operation
is sufficient to implement advanced tasks like model checking (see[Chapter I)).

Additionally, in[Section 4.3.2] we show that DRL only slightly increases the number
of memory accesses for both BLP and PCT. From this and the limited number of atomic
operations that it requires, we conclude that its scalability is likely as good as LHT’s,
which we can indeed confirm in We end with a correctness proof of DRL
in[Section 433

4.3.1 Parallel FIND-OR-PUT Algorithm

In the previous section, we have seen that the lockless method presented in [Cli07;
LPW10al], is not suitable for Cleary tables, since it would require atomic operations on
multiple pair-wise swaps. Region-based locking is neither appropriate, since clusters
grow “organically” and may span multiple fixed-size regions. Here, we introduce a
dynamic region-based locking (DRL) scheme that can be used in combination with
both the BLP algorithm and the Cleary compact hash table with its probe-sensitive FIND
operation. It uses one extra bit field per bucket (lock) to provide light-weight mutual
exclusion. This method has limited memory overhead and does not require a context
switch and additional synchronization points like operating system locks.



The atomic functions TRy-Lock and uNLock control this bit field and have the fol-
lowing specifications: TRY-LOCK requires an empty and unlocked bucket and guarantees
an empty, locked bucket or otherwise fails. uNLock accepts multiple buckets and en-
sures all are unlocked upon return (each atomically, the multiple arguments are merely
syntactic sugar). These functions can be implemented using the processor’s cas(a, b, c)
operation, which updates a word-sized memory location at a with ¢ atomically, if and
only if the condition b holds for location a [HS08, Ch. 5.8]. cas returns the initial value
at location a, used to evaluate the condition.

shows the dynamic locking scheme for the FIND-OR-PUT algorithm.
First, at [Line [3} the algorithm tries to write k to T[], only if the home location A is
empty and unlocked (=7 [h].lock A =T [h].occ). The function GRAB-UNOCC-EMPTY does
this and returns the previous value of the bucket as old. The success of the operation can
be determined from old (see[CineH). If a lock or full bucket was detected, the algorithm
is restarted at[Linel7l

Algorithm 4.2 Concurrent bidirectional linear find-or-put algorithm

1: procedure FIND-OR-PUT(K) 12: if —Try-LOCK (T [left]) then

2 h < hash(k) > non-excl. write:  13: return FIND-OR-PUT(k)> retry
3 old  GraB-uNocc-EMPTY (T [}, k) 14, if —TrRY-LOCK (T [right]) then

4 if —old.occ \—old.lock then 15: unLock (T [left])

5 r.eturn INSERTED 16: return FIND-OR-PUT(k)> retry
6 else if old.lock then 17: if FinD(k) then > exclusive read
7 return FIND-OR-PUT(k)> retry 8 unLock(T [lef], T right))

8 if FinD(k) then > non-excl. read 9. return FOUND

9: return FOUND 20: put(k) > exclusive write
10: left ¢ cL-Lert(h) 21: unLock(T [left], T [right])
1 right < cL-RIGHT(h) 22: return INSERTED

From|[LCine[T0Jonwards, the algorithm tries to acquire exclusive access to the cluster
around T [A]. Note that 7'[A] is occupied. At|Line|l10/and|Line|l 1} the first empty location
left of and right of 4 are found in 7. If both can be locked, the algorithm enters a local
critical section (CS) after else it restarts at|Line|l3|or|Line |16 (after releasing
all taken locks). In the CS, the algorithm can now safely perform exclusive reads and
exclusive writes on the cluster (Cine[I7]and [Cine 20).

DRL is suitable in combination with the FIND and puT operations of both BLP and
the Cleary table. If we are implementing the BLP algorithm using this locking scheme,
then rinD at[Cine[8]can perform a non-exclusive read (concurrent to any ongoing write




operations). The possibility of a false negative is mitigated by an upcoming exclusive
read at[Line[I7] For the Cleary algorithm, however, the non-exclusive read needs to be
dropped because the probe-sensitive lookup mechanism might yield a false positive due
to ongoing swapping operations.

4.3.2 Complexity and Scalability

Two questions come to mind when studying the DRL: (1) What is the added complex-
ity compared to the sequential BLP or Cleary algorithm? (2) What scalability can we
expect from such an algorithm. Below, we discuss these matters.

For ordered hash tables, like BLP and Cleary tables, the cluster size L depends on
the load factor «, as follows: L = (a —1)~% — 1 [AK74], where a = n/|T| and n the
number of inserted keys. Since DRL probes to the empty buckets at both ends of the
cluster, it requires (o — 1) =2 + 1 bucket accesses. When implementing the Cleary table
using DRL, this is the complexity for the FIND-OR-PUT operation independent whether
an insert occurred or not, because in both cases it “locks” the entire cluster. Note that
we do not count the bucket accesses of the called rFinp and the PuT operations, since, in
theory, these could be done simultaneously by the cL-LEFT and cL-RIGHT operations. In
practice, this seems unnecessary, because the cluster will be cache hot after locking it.

The sequential Cleary FIND and puT algorithms have to probe to one end of the
cluster to count the virgin and change bits, hence require more bucket accesses: 1/2(o —
1)=2 +1/2 (again assuming that we can count both in one pass or that the second pass
is cached and therefore insignificant). We conclude that Cleary+DRL (with one worker
thread) is only twice as slow as the original Cleary algorithm.

For BLP+DRL the story changes, but the outcome is the same. The sequential BLP
algorithm does not have to probe to the end of the cluster and is empirically shown to be
much faster than LP [[AK74]]. However, DRL+BLP is correct with non-exclusive reads
as long as an unsuccessful FIND operation is followed by an exclusive FIND to mitigate
false negatives, as is done in[Algorithm 4.7] But false negatives are rare, so again the
parallel FIND operation is not much slower than the sequential one. The same holds
for the puT operation, since the sequential version on average needs to swap half of an
entire cluster and the parallel version “locks” the whole cluster.

Scalability of DRL can be argued to come from three causes: first, the I/O complex-
ity (in memory access) of the parallel algorithm is the same the sequential versions, as
shown above, second, the number of (expensive) atomic operations used is low, DRL
uses zero, one or two (with the very rare possibility of several retries), and third, the
memory accesses are all consecutive. We analyze the third cause in some more detail.

To mitigate the effect of slow memories, caching is important for modern multi-core
systems. Each memory access causes a fixed region of memory, known as a cache line,



to be loaded into the CPU’s cache. If it is written to, the entire line is invalidated and has
to be reload on all cores that use it; an operation which is several orders of magnitude
more expensive than other operations using in-cache data. We have shown before that
highly scalable hashing algorithms can be obtained by lowering the number of cache
lines that are accessed: the memory working set (see[Section 2.2).

The open-addressing tables discussed in the current chapter exhibit only consecutive
memory accesses. And while it seems that the amount of buckets probed in the Cleary
algorithm is high, typically few cache lines are accessed. For example, there are 26
bucket accesses on average for o = 0.8, while on average only [26/64] +26/64 = 1.41
cache lines are accessed, assuming a bucket size of 1 byte and a cache line size of 64
byte. When o grows to 0.85, we get 1.71 cache line accesses on average, and when
o =.9,3.59 accesses. Note finally that with buckets of 1 byte, the cleary algorithm can
store keys of more than 32 bit for large tables, e.g, if m =28, thenw=b+m -3 =8+
28 — 3 = 33, while the non-compacting hash table requires five bytes per bucket to store
as much data. In conclusion, we can expect Cleary+DRL to perform and scale good at
least up to load factors of 0.8 and exhibit competitive performance to that of

4.3.3 Proof of Correctness

To prove correctness, we show that[Algorithm 4.2)is linearizable, i.e., its effects appear
instantaneously to the rest of the system [HSO8, Ch. 3.6]. Here, we do this in a con-

structive way: first, we construct all possible local schedules that[Algorithm 4.2 allows,
then we show by contradiction that any interleaving of the schedules of two workers al-
ways respects a certain critical section (CS) of the algorithm, and finally, we generalize
this for more workers. From the fact that CS is the only place where writes occur, we
can conclude linearizabilityg We assume that all lines in the code can be executed as
atomic steps.

If the home location of a key k is empty, correctness follows from the properties of
the atomic cas operation at[Cine[3] For every other table accesses (Cine[I7]and[Cine[20),
we prove that never two workers can be in their CS for the same cluster.

The ‘—’ operator is used to denote the happens-before relation between those steps
[HSO8]. For example, ‘cL-RIGHT;(X) — TRY-LOCK;(x)’ means that a Worker i always
first executes CL-RIGHT writing to the variable x (Cine[TT), and subsequently calls Try-
Lock using (reading) the variable x. We omit the subscript i, if it is clear from the
context which worker we are talking about. We concern ourselves with the following

local happens-before order: cas(h) ~» cL-LEFT(l) — CL-RIGHT(F) — TRY-LOCK(l) ~>

42 For completeness sake, we should also mention that we only allow for false positives to occur in non-
exclusive reads and that unsuccessful non-exclusive reads are always followed by a read operation in the CS,
i.e., an exclusive read.




TRY-LOCK(7) ~~ (occ(l) @ oce(r)), where occ(x) signifies a fill of a bucket (T [x].occ +
1) and ~~ indicates a happens-before relation dependent on a condition. Depending on
the replacement end (left or right), puT fills one of the buckets at the end of the cluster,
hence the exclusive-or: . Furthermore, we write [;, r; and h; for: the left variable, the
right variable and the home-location h; = hash(k), all local to a Worker i.

Lemma 4.1. ensures that when two workers try to enter their CS for the
same cluster, then: ; =1;Vr;=1;VIi=r;jVri=r,.

Proof. Assume Worker W; is in its CS, and Worker W; is about to enter the CS for
the same cluster. Since W; is in its CS, we have T'[l;].lock and T[r;].lock. W; is going
to perform the step occ(l;) or occ(r;). Note that these operations might influence the
clusters, as two clusters separated by only one empty bucket, may become one upon
filling the bucket.

Worker W; has yet to enter its CS, executing the steps: cas(h;) — cL-LeFt(l;) —
cL-RIGHT(7;). With a generalizable example, illustrates five non-trivial cases
that we consider, where W; starts with a & respective to the cluster /;, r;. Clusters in T
are colored gray and we assume that they are separated by one empty bucket (white), be-
cause more empty buckets makes the resulting cases only more trivial. There are several
representative home-locations marked with 4% to h¢ (e.g., choosing a different location
within the same cluster leaves the results of the cL-LEFT and CL-RIGHT operations un-
affected). Locations on the right of r; follow from symmetry. Below, we consider the
outcome of all the cases for /1;. We use the fact that there are no empty buckets between
l j and r e

hj = h“: Because T'[h;].occ, cas(h;) fails. W; performs the steps cL-LEFT(I;) —
cL-RIGHT(F;). Since [j = 1 < rj = 3 < I;,[Lemma 4.1]is vacuously true.

hj = h": This location is unoccupied and not locked, so the cas(h;) succeeds and
the algorithm returns never reaching CS, making vacuously true.

locked by W;
<li rl:
1l2l3lalslel7ls]olwo]ulli|ulis|ie
he Ty he hy he

Figure 4.2: Several clusters and empty positions. The cluster 8-10 is locked by worker
W;. Location marked with /4 to h° potential home locations for worker W;.



hj = h: This location is occupied so cas(h;) fails. Next, the step cL-LEFT([;) results
inlj = 3. The result r; of cL-rIGHT is dependent on the state of W;. If W; has not already
performed any occ or did perform occ(11), then r; = 7. If W; has executed occ(7), then
ri= 11. So, rj :7=li\/7’j: 11=r;.

h; = h?: The success of the cas(h;) depends on the state of W;. If W; has not
performed any steps, then cas(/;) restarts the algorithm at If W; has performed
occ(7), then W; continues with cL-LEFT(/;) and cL-RIGHT(7;), resulting in [; = 3,r; =
11 = r;. If W; has performed step occ(11), then [; =7 = I;,r; = 15.

hj=he: Since h° is occupied, cas(#;) fails again. W; continues with the cL-LEFT(/ ;)
and cL-rIGHT(7;). The result depends on if W; has executed occ(7) or occ(11). We dis-
tinguish five interleavings:

: cL-LEFT(I}) — cL-RIGHT(F}) — (0cci(7) Bocei(11)) =1 =T,r;=11=1r;
: cL-LEFT([;) = occi(7) = cL-RIGHT(rj) = ;=T =1l,rj=11=r;

: cL-LEFT(l;) = occi(11) — cL-riGHT(rj) = [j =T =1;,r; =15

: occi(7) — cL-LEFT(lj) — cL-RIGHT(rj) = [; =3,r; =11 =17,

: occi(11) — cr-LeFr(lj) — cL-riGHT(rj) = [j =T =l;,rj =15

I O R

Thus, under the above assumption: [; =[;Vr;=1;VIj=rjVri=r;. O

Theorem 4.1. No two workers can be in their CS at the same time and work on the
same cluster such that [; <1; <r;VI <r; <rV(; <LiArj>r).

Proof. By contradiction, assume the opposite: both W; and W; reach their CS and /; <
L <rVvE<r;<rV (lj <LNrj> ri). Without loss of generality because of symmetry,
we assume again W; to have entered its CS first. The steps for W; to arrive in its CS are:
cas(hj) — cL-LEFT(lj) — CL-RIGHT(rj) — TRY-LOCK([j) — TRY-LOCK (7).

The remaining step for W; is: occ(I;) ® occ(r;)

W; hash performed Try-Lock (/;) — TRY-LOCK(r;), thus we have T[l;].lock A T'[r;].lock.
According to that at least one of the locations /; and r; equals either ;
or r;. Therefore, W; will always fail with either TrRY-Lock(/;) or TRy-Lock(r;). This
conclusively proves mutual exclusion for two workers. Since additional workers cannot
influence W; in such a way that is invalidated, Theorem@ also holds for
N > 2 workers. O

Absence of deadlocks (infinite restarts at[Cine[7] [Cine[13]and|[Cine[16)), follows from
the fact that all “locks” are always released before a restart or a return. Furthermore,
we have absence of livelocks, because workers first “lock™ the left side of a cluster. The
one which locks the right side first, wins. With a fair scheduler the algorithm is also
starvation-free, because each worker eventually finished its CS in a finite number of

steps. From this, we conclude that[Algorithm 4.2]is linearizable.




4.4 Concurrent Cleary Tree Compression

In the current section, we show how the Cleary table can be used in the tree database,
to almost halve its memory usage in the ideal case. We will call the keys inserted in
the tree from now on ‘states’ to distinguish them from the keys stored in hash tables.
Like in we assume that 7 states of length k > 1 are stored in the tree, that
references can be encodes as z-bit indices in the tree table, and that the u-bit parts of
the states can also be stored in the place of a reference, i.e. u < z. (We use z for the
reference size instead of w used in to avoid confusion with the size of the
universe w = |U|.) For simplicity, we also assume that hash tables in the tree have a
size (number of buckets) that is a power of 2. and that the same holds for k.

Tree compression was introduced in the The techniques recursively in-
dexes keys of fixed lengths & in a binary tree of tuples. With the understanding that tree
vectors have a certain structure, i.e. in the context of model checking they consist of an
array of u-bit values for the variables in the model, we can see that the tree introduces
sharing between similar sub-vectors of different keys inserted into the tree store.

[Section 3.4]explains how the concurrent tree uses a single table with buckets of size
2z — 1 bits, to store tuples with z bit values and one root tag. This single-table solution
avoids resizing and additional indexing tables, to increase scalability. We chose z = 31
in the implementation, to keep compressed sizes low (approaching 64 bit) and store
close to 23! states in the optimal case (which experiments showed to be very common).

The dimensions of the concurrent tree table are ideal for the Cleary table: w =2z =
62 and m = z = 31 results in compressed bucket sizes of b = w —m+3 = 35 bits. Almost
half of the original size. However, the Cleary table does not provide stable indices, as
values are moved across buckets to maintain an order. Stable indices are required in the
tree table, because the tuples stored in the table refer to other tuples in the same table.

To still use the Cleary table in the tree, we now drop the no-resizing requirement,
reasoning that instead of resizing, the reachability search explained in can
also be reinitiated completely with a larger table size. Moreover, as we will see, several
other benefits can be attained when dropping this requirement, such as a greater storage
capacity in the tree.

To use the Cleary table in the tree, we first split the single table into a table of roots
and a table of internal tree nodes. We no longer need the tag bit to distinguish roots from
other tuples in the tree, raising z from 31 to 32. shows the new configuration,
with a single vector stored in the tree. The arrows represent the references in the tree.
Since only the internal table has incoming references, it is the only table that needs to
have less than 2% buckets. As a consequence, the roots table can grow larger than 2° and
thus the tree can store more than 2¢ states (the size of the internal store does not have to
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Figure 4.3: New tree table storing a single vector (3,5,5,3,4,1). To obtain the Cleary
tree, the roots table can be implemented with a Cleary table.

be a limitation here according to|Lemma 3.1)).

It is easy to establish that the new configuration does not use more memory com-
pared to concurrent tree with a single table presented in[Section 3.3} although it is harder
to fill available memory precisely now that two tables have to compete for space. To
analyze this, we disregard maximal sharing, which over-approximates the compression.
In practice, maximal sharing is also unlikely to have large effect in practice[Section 3.4]

In the new tree table, we can use the Cleary table as root table. This results into a
reduction of memory use:

Lemma 4.2. Disregarding maximal sharing, the Cleary tree uses at least r — 3 less
memory per state than the concurrent tree, where r is the log, size of the root table in

0 i
S

Proof. The function T;: N¥ — N describes the index of root tuple entries for all s €
S C N¥ vectors in the concurrent tree, with |S| = n. By this function is
injective, therefore all (different) n vectors have a unique root: There are n root tuples.
If £ > 2, each root points to 2 internal tuple entries. Take the left child, it is described
by T/, representing the tree table indices of tuples for all n; < n different left halves
§' = {s e NI¥? | 3¢’ € N2/ A5 45" € S}. Since also this subtree is injective, n = ||
tuple entries are stored to represent these vector halves. We can repeat the argument at




k=2
each internal tree node, and end up with n+ Y n; tuple entries, as there is no sharing
i=1
between entries.

The Cleary tree, can be described by a function 7Cy = C (T[k/ﬂ,TWz J), where C
represents the index in the Cleary table where the root tuple is stored (the fact that
this index is not stable does not matter, because they are not referenced in the tree).

Following the same reasoning as for the concurrent tree, we see that the Cleary tree
also stores n + kiz n; tuple entries for the same vector set S. But now the n root entries
are stored in thé:(ljleary table.

The kiz n; tuple entries of internal entries are stored using using 2z bits in the Cleary
tree; lesslztfllan the 2z 4 1 bits in the concurrent tree. For each state in the tree, one tuple

is stored in the root table (see[Section 3.4). In the concurrent Cleary table, the size of
the tuples stored (the universe) depends on [ = 29, thus we have w = 2¢g and m = r.
Hence, each tuple requires b = w —m+4 = 2q — r+4 bits. In the concurrent tree, each
tuple (internal and root) requires 2z + 1 bits. Therefore, the Cleary tree uses at least
(2z4+1)— (29 —r+4) =2z—2qg+ r — 3 bits less per state.

If the size of the internal table is chosen to just fit all tuple entries, then z = g.
Therefore, the Cleary tree uses r — 3 bits less per state. O

Since the root table may be larger than the internal table, the Cleary tree can halve
the memory compared to the concurrent tree. For example, taking z = g = 31 bits and
r = 35 bits, we have an optimal case of 2z+ 1 = 63 bits per state, whereas the previous
lemma tells us that the Cleary tree requires 31 bits (r — 3 = 32 bits less in this case).

Corollary 4.1. In the optimal case, the Cleary tree approaches z bits per state, assum-
ing a relatively large number of vectors is stored n>> k> > 1.

Proof. In optimal case, the n root entries dominate the tree: [ < n (see|Corollary 3.3)).
For this reason, the root table can be greater than the internal table: r > z, while ¢ = z.
Astheroot table is a Cleary table, a larger number of buckets increases the hash quotient,
in turn reducing the remainder and the bucket size. Using[Cemma4.2] we see that indeed
z bits per root entry can be surpassed.

Even with ideal sharing, the internal table still can contain up to / = k> — 2k entries

of size 2z (see[Corollary 3.3). Averaging their total size over all n states in the Cleary
tree, a few bits per state account for the memory use of the internal table.
In total, the Cleary tree thus uses around z bits per state. O

Corollary 4.2. Using only around z bits per state, the Cleary tree can still store more
than 2° states.



Proof. Follows from the proof of O

is perhaps a surprising and counter-intuitive result. The following
section confirms it.

The worst case compression ratios can be derived as well. But obviously, in case
tree compression is far from optimal, there is little merit in using the Cleary tree instead
of the concurrent tree. [Table 4.1) compares the compressed sizes just derived, to those
with the concurrent tree from The choice of the size of z depends on the
implementation as discussed below.

Table 4.1: The compressed state sizes, maximum number of states storable and imple-
mentation choice for z for the Concurrent tree and the Cleary tree.

Best case Max. states|z in impl.

Concurrent tree > 2z+ 1 bits < 2f z=131
Cleary tree ~27—r+4bits (g=17)| 2" >2° z=32

Implementation considerations. As explained in hardware con-
straints dictate the implementation to a large degree. We implemented the internal table
using z = 32 bits (64bit buckets in the internal table), and variable size [ =29 <2 = 232,
References to the internal are bit-packed to 2q < 64 bits, before storing them as root tu-
ples in the Cleary root table. We further fixed the Cleary table’s bucket size to b = 32
bits, making r variable under the constraint b =32 > w—m+4 = 2q —r+4. Thus the
user should ensure that r > 2g — 28.

4.5 An Information-Theoretic Lower Bound

This section establishes an information-theoretic lower bound for the storage space re-
quired per state. The fact that the tree yields good compression comes from the fact that
they contain structure and have combinatorial values as we saw in States
generated by a, e.g. a model checker, have these properties.

The Cleary tree stores far larger vectors than the Cleary table. The universe of
vectors in the tree is Ucr = {0, 1}“" of which only a small subset S C Ucr can ever be
stored in memory: n = |§| <& |Ucr|. The universe of the Cleary table Ucy,, on the other
hand, is only slightly bigger than the stored subset S’ C Uy, otherwise the compression

ratio obtained is not interesting: W%’:H with m =~ |§'| and w = Ucr.




We can still consider the information entropy contained in the larger states, but
a different approach is needed than in Information theory abstracts away
from the computational nature of a program by considering sender and receiver as black
boxes that communicate data (signals) via a channel. The goal for the sender is to
encode the data is small as possible, such that the receiver is still able to decode it
back to the original. The encoded size depends on the amount of entropy in the data.
In the most basic case, no statistical information is known about the data: each of X
possible messages has an equal probability of taking one of its values and the entropy
H is maximal: H(X) = logy(|X|)bit. The entropy thus corresponds to the number of
bits needed for the encoded message.

If more is known about the statistical nature of the information coming from the
sender, the entropy is lower and encoding can be applied to reduce the number of
bits needed per piece of information (bytes in the previous example). A simple ex-
ample is when we take into account the character frequency of the English language
for encoding sentences. Assuming that certain characters are much more common, a
code of fewer bits can be used for them, while longer codes can be reserved for other
characters. To calculate the entropy in this example, we need the probability of occur-
rence p(x) for each character x € X in the English language. We can deduce this from
analyzing a dictionary, or better a large corpus of texts. The entropy than becomes:
H(X) = Loex —p(x)logs (p(x))

We apply the same principle now to structured data. As example, we use state vec-
tors as processed in a model checker. In the previous section, we were reminded that
states consist of & slots of each u bits. In the previous chapter, we also saw that states
are generated by a next-state function, and locality ensures similar successors, e.g.:

NEXT-STATE((3,5,5,4,1,3)) = {{(3,5,9,4,1,3),(3,5,5,4,2,3),... }

As the predecessor is thus always known in the model checker’s reachability proce-
dure, we can abstract away from this one-to-many relation and view the states arriving
at the tree as a k-periodic stream of u-bit slots, as illustrated in The stream

(3,5,5,4,1,3) XTSRS 5 9.4,1, 3N EXTSTATR 3 5 g 3 5 JFXTSTATE
K-1 T
K K

Figure 4.4: The states generated with the NEXT-STATE function seen as a stream. As-
sumed probabilities are shown for the bold slot values.



can also be described as: (v3,...v} ), (v},...vi_|),... (37" ...vi= ). Given that the
predecessor state is always known, it makes sense to describe the probability of differ-
ent slot values of a state with respect to its predecessor: To encode a slot v; with i >0
and 0 < j < k— 1, the encoder can then always look at the predecessors’ value of the
corresponding slot v;_l to derive the absolute probabilities over all values.

Since we are interested in establishing a lower bound we may safely under-approximate
the number of slot values changed with respect to a state’s predecessor. It make sense
to assume that only 1 slot changes, since with lower values, the same state is generated
to often (and we do not require space to store equal states in the tree). Thus we take the
following relative probabilities:

i i k—1
i -1y
Pl =vi ="
With y = 2", notice that the there are y — 1 possible values for which a state slot can
differ from its predecessor: p(x) = ﬁ for x # v’].*l. This results in the following

definition of entropy per slot:

‘ k—1 k=1, > 1 1
Hyjoi(s';) = ———1 B E - I
lt(sj) k ng( k )+7 k(y—l) OgZ(k(y—l))

For reasonably large y and &, i.e. 1 < k <y, we arrive at:

1 k
Hslot ~ ;(IOgZ(y) +10g2(k) +k10g(k -1 ))

From this we can derive the entropy of a state:

Hgtare = k X Hyjor = lOgy (y) +log, (k) + klog(%)
Given that u is often an integer in model checking software, it is common to have
u = z, hence the entropy per state can approach log,(y) = log,(2¢) =z for 1 € k <«
y < n. This provides some intuition behind as the information entropy
is indeed is not dependent on the number of states n. From we conclude
that the Cleary tree can approach the information-theoretic optimum.



4.6 Experiments

In the current section, we show an empirical evaluation of the parallel Cleary table (PCT),
i.e. Cleary+DRL, by comparing its absolute performance and scalability with that of
BLP+DRL, LHT and RBL. In our experiments, several parameters have been fixed as
follows: m =28, b = 16 for PCT, while for the non-compacting tables b = 64, and finally
o = 0.9. These parameters reflect best the goals we had in mind for this work, since
all tables can store pointers larger than 32 bits. Furthermore, the load factor and bucket
size for PCT is higher than the values discussed in creating a healthy
bias against this algorithm. Additionally, we investigated the influence of different load
factors on all tables.

We used the following benchmark setup. All tables were implemented in the C
language using pthreadsﬁ For RBL, we determined the optimal size of the regions
by finding the size that yielded the lowest parallel runtime, as the scalability depends
largely on this parameter [DJK13]]. For table of 22® buckets, this turned out to be 2!3.
The benchmarks were run on Linux servers with 4 amp Opteron(tm) 8356 CPUs (16
cores total) and 64GB memory. The maximum key size w that all tables can store in
our configuration is 40: for PCT we have w = b+m —4 = 16 + 28 — 4 = 40, and for
BLP, LHT and RBL we have w = 64 — 2 = 62 (2 for the lock and occ bit). Therefore,
we fed the tables with 40 bit keys, generated with a pseudo random number generator.

gives the runtimes of all hash tables for different read/write ratios and
load factor of 90%. Beside the runtimes with 1, 2, 4, 8, and 16 cores (Iy for N €
{1,2,4,8,16}), we included the runtimes of the sequential versions of the algorithms
Tseq, i.€., the algorithm run without any locks and atomic instructions. From this, we

Table 4.2: Runtimes of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1 and 9:1.

Alg. LHT RBL BLP PCT
r/wratio|| 0:1 3:1 9:1 0:1 3:1 9:1 0:1 3:1 9:1 0:1 3:1 9:1

Tseq 77.5 2424 569.2| 76.7 239.9 563.2| 71.8 279.1 676.0| 54.5 368.9 1050.
T 81.6 255.2 599.2|145.9 565.4 1404.|97.5 302.0 726.3|77.3 565.9 1543.
T 51.6 157.6 371.0| 85.0 327.6 813.4| 60.8 188.8 443.9| 44.4 317.7 863.9
T4 26.5 779 184.0| 46.2 170.2 4249|313 94.0 219.1|23.4 159.7 431.9
T3 139 396 929| 240 894 219.2|16.5 47.8 1103|115 79.7 216.0
Tie 7.7 21.1 48.8| 135 48.6 1205 94 255 572| 6.0 41.6 1129

43 Available at: http://fmt .cs.utwente.nl/tools/ltsmin/memics—2011
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Figure 4.5: Speedups of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1 and 9:1.

can deduce the overhead from the parallelization. Comparing the runs with a r/w ratio
of 0:1, we see that the sequential variants have more or less the same runtime (PCT
is slightly faster, due to its compacter table). Only the lockless algorithms show little
overhead when we compare Ty, to 77, while DRL shows that the posix mutexes slow
the algorithm down by a factor of two. The same trend is reflected in the values for Ty
with N > 1.

If we now focus our attention to the higher r/w ratios, we see that reads are much
more expensive for PCT. This was expected, since non-exclusive reads in DRL are not
allowed for PCT as explained in the previous section. To investigate the influence of
the r/w ratio, we plotted the absolute speedups (Sy = Tseq /Ty) of the presented runs in
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Figure 4.6: 16-core runtimes of BLP, RBL, LHT and PCT.

The lightweight locking mechanism of DRL delivers good scalability for
PCT and BLP, almost matching those of LHT. While PCT speedups are insensitive to
the r/w ratio, since the algorithm always performs the same locking steps for both read
and write operations, BLP shows much better speedups for higher r/w ratios. Finally,
we see that RBL is no competition to the lockless algorithms.

To investigate the effects of the load factor, we measured the 16-core runtimes of all
algorithms for different load factors. To obtain different load factors we modified the
number of keys inserted and not the hash table size, therefore we plotted the normalized
runtimes 7™ in[Figure 4.6 (T"*"™ = T/, where o0 = n/|T| is the load factor and n
the number of keys inserted). Due to the open-addressing nature of the hash tables
presented here, the asymptotic behavior is expected for a close to 100% (the probe
sequences grow larger as the table fills up). However, this effect is more pronounced for
PCT, again because of the read-write exclusion, and for RBL, because more locks have
to be taken once the probe distance grows.

The concurrent Cleary tree implementation is available in the multi-core LTSMIn

backend [LPWT11a]. Benchmarks and compression ratios can be found in [Chapter IT]
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4.7 Discussion and Conclusions

We have introduced DRL: a lockless mechanism to parallelize BLP and Cleary compact
hash tables efficiently. We have shown, analytically and empirically, that these Parallel
Cleary Tables (PCT) scale well up to load factors of at least 80%. This is acceptable,
since the compression ratio, obtained by compact hashing, can be far below this value.

With experiments, we also compared both parallel ordered hash tables (PCT and
BLP) with a state-of-art lockless hash table (LHT) and a region-based locking table
that uses operating system locks (RBL). We found that PCT and BLP can compete with
LHT in terms of scalability, but adds a factor 2 of performance overhead. On the other
hand, RBL scales worse than the other lockless tables. We finally showed that PCT
comes with higher costs for FIND operations and higher load factors. However, this also
holds for the sequential algorithm because it has to probe to the end of the cluster as the
analysis showed and as is reflected by the good speedups that PCT still exhibits.

While we concentrated in this work on a parallel FiNp-or-pUT algorithm, we think
that other operations, like individual FIND, p and DELETE operation, can be implemented
with minor modifications.

In future work, we would like to answer the following questions: Could DRL be im-
plemented with locking only one side of the cluster and the home location? Could PCT
be implemented with non-exclusive reads? The former could further improve the scal-
ability of DRL, while the latter could transfer the performance figures of paralle]l BLP
to those of PCT. We would also like to eliminate the superfluous occupied bit [DMO9Y|
page 5] and see if DRL could be used on similar hashing schemes such as Robin Hood
hashing [|[CLMS85].

We further showed the use of the Cleary table in tree compression. The resulting
compression comes close to the information-theoretic optimum as our model for a lower
bound on state entropy shows.
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Introduction

With the realization of scalable multi-core reachability and compatible state compres-
sion techniques in [Part I} many safety properties can be checked efficiently (see
[tion T.4). To support all safety properties and also liveness properties, we need parallel
algorithms for checking temporal logics, e.g. LTL. Several parallel LTL model check-
ing algorithms already exist (Section 1.5.1)), but these are all based on distributed algo-
rithms which loose the optimal time complexity and on-the-fly property of the automata-
theoretic approach to model checking. In the current part, we pursue a linear-time al-
gorithm for LTL checking, an important open problem according to many researchers:

“Itis as yet an open problem how a liveness verification algorithm could
be generalized to the use of more than two processing cores while retaining

a low search complexity.”
[HBO7]

“One of the most important open problems of parallel LTL model check-
ing is to design an on-the-fly scalable parallel algorithm with linear time
complexity.”

[BBRIOD]

In the current part, we exploit the strengths of the parallel reachability from
— its flexibility with respect to search orders and its on-the-fly capability — to create a
new parallel version of the traditional linear-time NDFs algorithm for finding accepting
cycles in a graph. The accepting cycles constitute (all) counterexamples in the automata-
theoretic approach to model checking, thus solving the problem of LTL checking. A
parallel NDFs algorithm is proposed in and gradually improved in
and[Chapter 7} Our experimental results show that the resulting cNDFs algorithm
[ter 7), delivers scalable parallel LTL checking with improved on-the-fly behavior (see

Section 7.4.4] but also[Section 6.4)) and which is linear in the size of the graph.



Because the sequential NDFs relies on the pFs order [KruOS[, of which the paral-
lelization is theoretically infeasible as explained in[Section 5.1] we rely instead on eager
independent, or embarrassingly, parallel computation, with late global propagation of
results. In the worst case, this approach could result in a speedup of 1, with all proces-
sors performing the same computations (the work complexity becomes P x N, with P
the number of processors and N the size of the state space, while the time complexity
remains equal to that of a sequential algorithm). Experiments however show that for
practical problems this does not occur (Section 6.3.4|and [Section 7.4)).

CNDFs supports the excellent state compression by means of tree compression as in-
troduced in The goal posed by Subquestion 2 of supporting
other reduction techniques, such as partial-order reduction, is however not completely
met, as we do not present a way to implement the necessary ignoring proviso [EP10].
While we have indications that cNDFs can support it at least to some extend, we opted
instead to focus on an important subset of LTL: livelocks. [Chapter §|presents a new par-
allel DFsgyyo algorithm [LF13| for solving livelocks, which delivers optimal scalability
and at the same time excellent partial-order reductions.

The table below describes the contributions that the current part makes towards
solving the goals of the thesis (c.f. [Table 1.1]in[Section 1.5.3). Scalable and on-the-fly
multi-core LTL checking of explicit-state formalisms is now added to the table. State
compression is still supported by exchanging the hash table with the lockless tree table
of Only partial-order reduction is not supported because of the difficulty
of implementing the ignoring proviso in parallel. The parallel DFsg, algorithm solves
this problem for livelocks.
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Many of the experiments presented in the current part are done on 16-core machines
(except in [Chapter 7] and [Chapter 8)). In[Chapter 11} we present strong evidence that
these methods also scale on 48-core machines, and in absolute terms when compared
to sPIN, a leading model checker implementation.




Multi-Core Nested Depth-First Search

Alfons Laarman, Rom Langerak, Jaco van de Pol, Michael Weber,
Anton Wijs

Abstract

The LTL Model Checking problem is reducible to finding accepting cycles in
a graph. The Nested Depth-First Search (NDFs) algorithm detects accepting cy-
cles efficiently: on-the-fly, with linear-time complexity and negligible memory
overhead. The only downside of the algorithm is that it relies on an inherently-
sequential, depth-first search. It has not been parallelized beyond running the inde-
pendent nested search in a separate thread (dual core).

In the current chapter, we introduce, for the first time, a multi-core NDFs algo-
rithm that can scale beyond two threads, while maintaining exactly the same worst-
case time complexity. We prove this algorithm correct, and present experimental
results obtained with an implementation in the LTSMIN toolset on the entire BEEM
benchmark database. We measured considerable speedups compared to the current
state of the art in parallel cycle detection algorithms.

About this chapter:

The current chapter is based on the paper “Multi-core Nested Depth-First Search”,
which was published at ATVA 2011 |[Laa+11].

The original text from |Laa+11] has been improved by correcting an error in the multi-
core nested depth-first search algorithm with extensions (Algorithm 5.4). In the orig-
inal version it was not taken into account that the coloring introduced by the all-red
extension could cause the same early backtracking problem that is discussed in[Sec
This problem was remedied by an additional wait statement. We thank
Wan Fokkink and Stefan Vijzelaar for pointing out this problem. We further extended
the discussion on the automata-theoretic approach to model checking, to better sup-
port the natural reading order of the current thesis. The general introduction was



removed. Finally, we also updated experiments with new benchmarks, as we discov-
ered a bug in the implementation that affected the speedups.

Note that[Chapter 7]presents a superior algorithm.

5.1 Introduction

Typically, in order to fully verify whether a system specification adheres to a given
temporal property, a model checking algorithm needs to store the entire so-called state
space in memory. A state space is a directed graph which explicitly describes all poten-
tial behavior of the system specification (see[Chapter IJ). Recent observations [BBR10b]
support that research should be focused on achieving faster model checking (MC); cur-
rently, memory capacity of the latest hardware allows the analysis of very large state
spaces, but the required time to do so is often impractically long.

One advanced MC task is the verification of full Linear Temporal Logic (LTL) prop-
erties [BKO8]. LTL can be subdivided into two classes of properties: safety properties,
e.g. “nothing bad ever happens”, and liveness properties, e.g. “eventually something
good happens”. While safety properties can be handled with so-called reachability,
which entails visiting all states in the state space reachable from the initial state, live-
ness properties require a more complicated analysis.

An algorithm introduced by Courcoubetis et al. [Cou+92], often referred to as Nested
Depth-First Search (NDFs), is particularly useful for checking liveness properties. It has
a linear time-complexity and runs on-the-fly, i.e. without the need to generate the whole
state space, and requires only two bits per state [[SEOS].

While reachability has been parallelized efficiently in a linear-time multi-
core LTL MC algorithm was still unknown. Nprs cannot trivially be adapted to a multi-
core setting, since it relies on depth-first search (prs), which is often considered inher-
ently sequential. In particular, the problem of establishing lexicographic prs postorder
(with fixed successor ordering) in a digraph has been shown to be P-complete [Rei85].
As it is generally believed that P # NC, where NC or “Nick’s Class” [Coo79; [Pip81]|
represents efficiently parallelizable problems, it is also likely that P-complete problems
are not parallelizable.

But even though many other parallel LTL MC algorithms have been introduced
over the course of years, none of them exhibits a worst-case linear-time complexity (or
even O(n x log(n)), with n the number of states) and the complete on-the-fly prop-
erty [BBR10b; BBR09a; Bar+10].

Recent developments, which we group here under the term swarm verification (SV)
[HIGOS; [HIG11], have introduced new prs-based techniques [Dwy+07; SGO3] to per-
form MC tasks in parallel. Although mainly targeted at distributed-memory settings, in



which multiple machines are employed, SV can trivially be used on a multi-core, i.e.,
shared-memory, machine as well. However, when doing so, the fact that the memory is
shared is obviously not exploited.

In the current chapter, we first propose SV-based multi-core Nprs with shared state
storage. While this speeds up cycle detection significantly, in the absence of accepting
cycles each core still has to traverse the complete state space. Next, we introduce a fine-
grained and basic sharing mechanism between threads. Even though parallel search
may endanger the correctness of a multi-core NDFs by breaking the postorder, we prove
that our algorithm is in fact correct. We subsequently add several known Nprs opti-
mizations [SEO5] to the new parallel setting. Finally, we demonstrate its usefulness in
practice by comparing many experimental results obtained with an implementation of
our algorithm with results obtained with existing parallel LTL MC algorithms.

Contributions. We present the first multi-core on-the-fly LTL model checking algo-
rithm which is linear-time in the size of the input graph, and has a potential speedup
greater than two. We provide a rigorous proof of its correctness and many benchmarks.
Though the new algorithm does not scale perfectly for all inputs yet, we still believe to
have come one step closer to solving the open question, put forth by Holzmann et al. and
Barnat et al. [HBO7; BBR09a], of finding a time-optimal, scalable, parallel algorithm
for accepting cycle detection.

Next, in[Section 5.2] the preliminaries behind LTL MC are explained. Related work
is discussed in We propose a multi-core Nprs algorithm, prove its cor-
rectness and provide optimizations in[Section 5.4] [Section 5.5|contains a discussion on
the experiments we conducted. Finally, in considerations are addressed,
conclusions are drawn and possibilities for future work are given.

5.2 Background (LTL Model Checking)

LTL MC entails checking that a system under verification P satisfies an LTL property ¢,
which may be a liveness property that reasons over infinite traces of the system (“even-
tually something good happens”). We first explain the automata-theoretic approach to
this problem, and then discuss an existing algorithm to solve it.

5.2.1 The Automata-Theoretic Approach to LTL Model Check-
ing

LTL model checking is usually performed following the automata-based approach orig-
inating from [[VW86] that proceeds in several steps. In the current chapter, we focus




only on the last step of the process that can be reduced to a graph problem: given a
graph representing the synchronized product of the Biichi property automaton and the
state space of the system, find a cycle containing an accepting state. Any such iden-
tified cycle determines an infinite execution of the system violating the LTL formula.
In the current chapter, we will only reason about Biichi automata that result from the
synchronous product of a Biichi property automaton and a system graph describing the
dynamic behavior of the modeled system.

Definition 5.1. A Biichi automaton (BA) is a quadruple B = (S, sy, NExT-sTaTE(), F),
with S a finite set of states, sy the initial state, post: S — 2° the successor function,
and F C S a set of accepting states.

The use of the NExT-STATE() function, instead of a transition relation, reflects the
fact that this cross product can be generated on-the-fly [VWS86].

Notations. Let B = (S,s7,NExT-sTATE(), F) be a BA. If for 5,7 € S, we have t €
NEXT-STATE(s), then we can also write s — ¢. The reflexive transitive closure of — is
denoted by —*, and the transitive closure by —*. We call s —* ¢ and s —7 ¢ paths
through B, i.e. sequences of states connected by the successor function. Sometimes we
interpret a path 7 as a set of states, and write s € 7, meaning that s € S is included in
the sequence of states of 7. A run through B3 is an infinite path starting at s;. Finally, we
call arun 7 accepting if and only if for infinitely many s € 7, we have s € F. Checking
the existence of such a run is called the emptiness problem.

To check an LTL property ¢ on P, it suffices to solve the emptiness problem for
the product of the state graph Gp and the Biichi automaton B- (e.g. [VW86]]). Here,
Gp is an explicit representation of all possible behavior of P in the form of a graph,
and B- is the Biichi automaton accepting all infinite paths described by the negation
of ¢. A counterexample for ¢ in B = Gp x B exists iff there exists some a € F such
that s; —* a and a —7 a (i.e. there is an accepting run), where the latter is called an
“accepting cycle”. Hence, solving the emptiness problem corresponds with determining
the reachability of an accepting cycle.

The fact that the cross product can be generated on-the-fly avoids that we have to
generate (and store) Gp in its entirety, before calculating the cross product. Moreover,
the LTL MC procedure — we discuss one in the next section — can terminate early when a
counterexample is found, often ensuring that only a small part of B needs to be explored
and stored.



5.2.2 Sequential LTL Model Checking Algorithms

The first linear-time algorithm to detect accepting runs was proposed by Courcoubetis
et al. [Cou+92] and, today, is often referred to as nested depth-first search (NDrs). In
the current chapter, we propose a multi-core NDFs (Mc-NDFS).

Following [Bos02|, we first discuss a non-linear algorithm to il-

lustrate the principle. It performs an outer search, called dfs_blue, to find accepting
states (see[Cine[I6). This blue search marks states on the stack cyan and vis-
ited states blue , hence its name (note that initially, all states are white). The
nested search (dfs_nested) then searches for a cycle over the accepting state, which we
refer to as the seed of the search. It may search the entire state space as it always starts
with an empty visited set R (Cine[I7). When it encounters a cyan state (Cine[7)), it found
an accepting cycle, as the cyan stack of the blue search leads to the seed [HPY96|. Con-
versely, it is easy to see that if a cycle exists, it is reported, as an independent nested
search is launched for all accepting states.

The obvious problem with is that it is quadratic in the size of the
state space: For each (accepting) state, the entire state space may be visited in the

nested search. Realizing that dfs_blue sorts the accepting states in prs postorder, i.e.
dfs_nestedis called in the backtrack of dfs_blue, we may see that this is entirely not nec-
essary. For if a nested search from a seed a encounters a state s from a previous nested
search from @', and a lies on a cycle with s, then so must @’ lie on a cycle with s. If this is
not the case, it would contradict the fact that @’ was processed before a in the postorder
(see [Tar72] for a detailed explanation). Since the search from «’ did not encounter a

Algorithm 5.1 A nested accepting cycle detection algorithm (non-linear)

1 proc ncd(s;) 11 proc dfs_blue(s)
2 dfs_blue(s;) 12 s.color = cyan
3 report no cycle 13 for all 7 in NEXT-STATE(s) do
4 proc dfs_nested(s) 14 if t.color=white
s R:=RU{s} 15 dfs_blue(r)
6 for all ¢ in NEXT-STATE(s) do :6 lf; e_];)
7 if t.color=cyan 7 T
. 18 dfs_nested(s)
8 report cycle & exit | lor " bl
9 else if ¢ ¢ R 9  s.color = blue

10 dfs_nested(r)




Algorithm 5.2 An adapted New NpFs algorithm

1 proc nndfs(sy) 11 proc dfs_blue(s)

2 dfs_blue(sy) 12 s.color = cyan

3  report no cycle 13 for all 7 in NEXT-STATE(s) do
4 proc dfs_red(s) i: if gfalglhwmm
5 for all ¢ in NEXT-STATE(s) do . s_blue(r)

. 16 ifseF
6 if t.color=cyan
. 17 dfs_red(s)
7 report cycle & exit 18 lor = red
8 else if t.color=blue s-cotor = Te
. 19 else

9 t.color := red 0 lor = bl
10 dfs_red(?) s.color := blue

cycle through s (if it did, it would have terminated, contradicting a subsequent search
from a). In the nested search for a, the algorithm therefore does not have to explore s,
or any other s visited in a previous nested search from some seed a’ (processed earlier
in the postorder). In other words, R does not have to be emptied at[Cine[T7]

The basic NpFs algorithm is thus equivalent to |Algorithm 5.1 without |[Line 17"5'1
Over the years, extensions to Nprs have been proposed in, e.g., [HPY96} SE05; GS09].

We build on the New Nprs (NNDFs) algorithm from [SEO05] (Algorithm 5.2). It im-
proves NDFs by combining the blue, cyan and red color in a single 2-bit variable (here:
color). The algorithm now delays the red coloring of the seed until after the red search
(Line|18)), so it stays cyan during the search for cycle detection at|Linel6| [Algorithm 5.2|
does not include the early cycle detection in dfs_blue from the original NNpFs, for this
extension does not contribute to the understanding of Mc-nDFs. In[Section 5.4.4] we
retrofit Mc-NDFs with this and other extensions.

NNDFs thus runs in linear time, since each reachable state is at most visited twice,
once in the blue pFs and once in a red DFs. An intuitive proof of correctness is given in
[Cou+92]. In [GS09], a standalone correctness proof is given for NNDFs with early cycle
detection and an extension called allred (both are explained in|Section 5.3). [Section B.1|
gives a detailed correctness proof for a roughly equivalent algorithm, which may serve
as an introduction to the proof of Mc-nDFs later in the current chapter.

31 Although [Algorithm 5.1|already contains the extension to detect cycles via the cyan stack [HPY96].



5.3 Related Work

Two prominent classes of linear-time algorithms to detect accepting runs are formed
by the Nprs-based and the strongly connected component (SCC)-based algorithms (ex-
plained below). The performance of both classes of algorithms is known to be similar,
up to some exceptions: Algorithms in the Nprs class use less memory, while algorithms
in the Scc class tend to find counterexamples faster [GV04; [SE05; (GS09]. Since we
propose an NpFs-based algorithm, the emphasis here is on related work in the Nprs
class. Finally, we also discuss breadth-first search (BFs)-based algorithms.

SCC-based algorithms. Strongly connected components (SCCs) are the subgraphs
of a graph in which each state can reach all other states [Tar72], informally speaking.
An non-trivial SCC contains at least one transition. Non-trivial SCCs with accepting
state therefore contain an accepting cycle. Hence, several researchers suggested the use
of Tarjan’s algorithm [Tar72] to find accepting cycles. To make the algorithm more
on-the-fly several extensions have been introduced [Cou99; GVO04].

Nprs. As mentioned in[Section 5.2} Nprs was introduced in [[Cou+92]. There, a cor-
rectness proof is given based on the fact that red DFss are initiated for accepting states
based on the postorder enforced by the blue prs. Holzmann et al. [HPY96] observe that
it suffices in a red DFs to check the reachability of a state currently on the stack of the
blue DFs, i.e. a state colored cyan in NNDFs, since such a state can reach the accepting
state which initiated the current red pFs, closing an accepting cycle.

Schwoon and Esparza [SEO5|] combine all of the above extensions and observe that
some combinations of colors can never occur. This allows them to introduce a two-bit
color encoding, also encoding a cyan color for states on the stack of the blue prs. Finally,
Gaiser and Schwoon [GS09] introduce the allred extension and give a standalone proof
for their NnpFs. The allred extension incorporates an additional check in the blue DFs:
if all successors of a state s are red, then s can be colored red as well. This avoids some
calls of dfs_red. We will show later that for our Mc-NDFs, this extension is very useful.

Parallel Nprs. Holzmann and BoSnacki [HBO7] proposed a dual-core Nprs (NDFs-
2) based on the observation that a transition initiating a red DFs is an “irreversible state
transition”, i.e. it splits the state graph. A new thread is launched to handle the red pFs.
Since both Drss are still inherently sequential, the number of threads cannot exceed two,
and both potentially have to search the entire state graph. Courcoubetis et al. already
mentioned that the two Drss could be interleaved.




Prominent model checking approaches primarily aimed at settings with distributed
memory, e.g., when using a cluster or grid, are swarm verification (SV) [HIGO8; [HIG11]]
and Parallel Randomized prs [Dwy+07; [SGO3|] (PrDFs). These are so-called embar-
rassingly parallel [Fos95] techniques, since the individual workers operate fully inde-
pendently, i.e. without communication with the other workers. From here on, when
mentioning SV, we refer to existing SV and PrpFs techniques. Note that the search di-
rection of a DFs is determined by the order in which states are selected for exploration
from NExT-sTATE(s) (for any s € S), e.g. on |Line [13| of [Algorithm 5.2| In SV, basi-
cally each worker performs a prs with a unique ordering of the successor states. In this
way, workers explore different parts of the reachable state graph first. This method has
proven to be very successful for bug-hunting. In the absence of bugs, though, the graph
will be explored N times, with N the number of workers, since the workers are unaware
of each other’s results. Although not explicitly mentioned before, SV can be performed
in a multi-core setting as well with each worker performing the Nprs algorithm.

Brs-based methods. Several other LTL MC methods exists which are not DFs-
based. Instead these algorithms rely on Brs techniques [BBCO03a] and are therefore
easier to parallelize, even in a distributed setting. On the down side, the linear-time com-
plexity and on-the-fly property is often lost. All of these algorithms have been designed
for the distributed setting and some were ported to multi-core machines [BBR10b;
Bar+10] (namely: Owcty, Map and Otr_OwcTy).

Negative Cycle (NEcc) [Bri+01] uses a similar fixed-point approach, but instead
propagates a negative index from accepting states. The accepting cycle detection prob-
lem is thus reduced to finding negative cycles. The algorithm is not on-the-fly and the
performance has been found to be inferior to other solutions [Bri+04].

Every accepting cycle contains a back-level transition, which jumps back from a
state that is / levels from the initial state, to a state that is <[ levels from the initial state.
Back-Level Edge (BLEDGE) [BBCO3Db] uses this information to find the cycles with a
fixed point computation. It is not on-the-fly and its performance has been found to be
meager in practice [Bri+04]. An on-the-fly version of the algorithm has however been
developed in [BBCO5b].

One-Way-Catch-Them-Young (Owcty) [CP03], repeatedly removes states that can-
not be part of an accepting cycle. It is sufficient to only remove states without (not yet
removed) successors and states that have no accepting predecessors. To compute these,
the algorithm propagates the number of preceding accepting states. The algorithm is
also not on-the-fly at all.

Maximal Accepting Predecessor (Map) [BBR10b]|| performs multiple forward reach-
ability computations to propagate the preceding accepting state with a maximal index



Table 5.1: Sequential and multi-core LTL MC algorithms and their worst-case time
complexity, scalability, and on-the-fly property. (7 is the set of reachable transitions,
|S| the number of states, || the number of accepting states, and / the height of the Scc
quotient graph [CPO03].)

Algorithm Source Time complexity  Scalability On-the-fly
NDFs [Cou+92] o(S|+1T1) 1 core Yes
Couvreur-Tarjan [Cou99)| O(IS|+1T1) 1 core Yes
GV-Tarjan (GV04] o(S|+1T1) 1 core Yes
NpFs-2 [HBO7| O(S|+1T1) 2 cores Yes
NEecc [Bri+01]] o(S|-1T1) N cores No
Mar (BBR10b] O(|F>-|T1) N cores  Heuristic
BLEDGE (BBCO3b| O(T1-(|S|+1T1)) N cores No
OtF_BLEDGE [BBCO5b] O(T|-(|S|+|T])) N cores Heuristic
Owcty [CPO3] O(h-|T)) N cores No
Otr_Owcty (BBRO9aj O(h-(|S|+|T])) Ncores Heuristic
Mc-NDFs Chapters|6||7|5'2| ON-(|S|+|T])) N cores Yes

for every state. This computation reaches a fixed point after a while, at which moment
the maximal accepting predecessor of at least one accepting state on a cycle, has to be
itself. Map preserves the on-the-fly property to the extent that it is heuristic: cycles can
be detected early (when an accepting state finds itself as maximal predecessor), but this
is not guaranteed.

By combining Map with Owcry, the same property is transferred to the new On-
The-Fly One-Way-Catch-Them-Young (OTF_OwcTy) algorithm. For the important class
of weak LTL, the algorithm has been shown to be time-optimal [BBR09a], therefore it
is the current state of the art in multi-core LTL MC.

gives a brief overview of all sequential and parallel LTL MC algorithms
discussed so far with their worst-case complexities and on-the-fly behavior. In the sub-
sequent sections (and later chapters), we develop a multi-core version of Nprs (Mc-NDFs)
that scales to more than 2 cores and inherits the on-the-fly property of the original algo-
rithm. The scheduling approach of this algorithm is optimistic, based on on SV, but with
communication, thus the complexity ranges from 1 time the complexity of the original
Nbrs, to N times its complexity.




5.4 Multi-Core Ndfs

5.4.1 A Basic Multi-Core Swarmed Ndfs

As already mentioned, SV is compatible with a shared-memory setting. However, the
independence of workers in SV may result in duplicated states on the different ma-
chines, hence, when mapped naively to a multi-core machine, the shared memory is not
exploited. Therefore, we store all states in a shared lockless hash table or tree table,
which have been shown to scale well for this purpose in [PartTI}

A basic SV Nprs algorithm executes an instance of for each worker i
with thread-local color variables. The two bits needed per state per worker are small
compared to the state itself and for a dozen or so workers, memory usage is still lower
than for Scc-based algorithms [SEO5]. Local permutations of the NEXT-STATE function
direct workers to different regions of the state graph, resulting in fast bug-finding typical
for SV. With NEXT-STATE? (NEXT-STATE/), we denote the permutation of successors used
in the blue (red) prs by worker i. For inputs without accepting cycles this solution does
not scale. In the next section, we attack this problem.

5.4.2 Multi-Core Ndfs with Global Coloring

A naive sharing of colors between multi-core workers is prone to influence the inde-
pendent postorders on which the correctness of the Nprs algorithm relies [Cou+92]. In
the current section, we present a color-sharing approach which preserves correctness.
The next section provides a correctness proof of this Mc-NDFs algorithm.

The basic idea behind Mc-NDFs in is to share information in the
backtrack of the red Drss (dfs_red). A new (local) color pink is introduced to signify
states on the stack of a red DFs, analogous to cyan for a blue prs. When a red prs
backtracks, the states are globally colored red. These red states are now ignored by
both all blue and red Drss, thus pruning the search spaces for all workers i.

Additionally, we count the number of workers that initiate dfs_red in s.count
and wait with backtracking until this counter is 0 (Cine[21]22)). This enforces that if mul-
tiple workers call dfs_red from the same accepting state, they will finish simultaneously.
[Figure 5.T]illustrates the necessity of this synchronization by a simple counterexample
that could occur in absence of this synchronization.

A worker 1 could explore a,b,u,v,w, backtrack from w, explore ¢ and backtrack
all the way to the accepting state b where it will call a dfs_red at Then this
dfs_red(b,1) could explore u,v,w and halt for a while. Now, a worker 2 could start

52 And Evangelista et al. (see .



Algorithm 5.3 A Multi-core Nprs algorithm, coloring globally red in the backtrack

1 proc mc_ndfs(s,N) 13 proc dfs_red(s,i)
2 dfs_blue(s, 1)]|..||dfs_blue(s,N) 14 s.pink[i] = true
3 report no cycle 15  for all # in NEXT-STATE! (s) do
4 proc dfs_blue(s,i) 16 if t.colorli]=cyan ‘

Q. 17 report cycle & exit all
5  s.colorli] := cyan . R

. b 18 if —z.pink[i] A —t.red
6 for all 7 in NEXT-STATE/(s) do 19 dfs_red(s,)
7 if t.color[i|=whiteN—t.red . S_fedint

. 20 ifseF
8 dfs_blue(z,i) .
9 ifseF 21 s.count = s.count — 1
22 await s.count = 0

s.count = s.count + 1
11 dfs_red(s,i)
12 s.color[i] := blue

—_
(=]

23 s.red = true
24 s.pink[i] = false

dfs_red(b,2) in a similar fashion. Next, it could explore w, v, u, backtrack, mark u red
and halt for a while. Then worker 1 continues to mark w red.

Note that the two accepting cycles contain red states, but both workers can still detect
a cycle by continuing to explore v and 7 (b is cyan in the local coloring of both workers).
However, a third worker can endanger this potential, while the first two workers halt for
a while. After worker 3 searches a and subsequently ¢ and b in a blue DFs, it will start a
dfs_red at b, but because its successors are now red, worker 3 will backtrack and mark b
red. Note that exactly this step is prevented by adding the await statement. Continuing
with dfs_red(a, 3), states t and a will also become red, obstructing workers 1 and 2 from
finding a cycle.

Figure 5.1: Counterexample to correctness of Mc-NDFs without await statement.



No worker finds a cycle in this way, which thus constitutes a counterexample for
correctness. However, because worker 3 is forced to wait for the completion of the
red Drss of workers 1 and 2 before it can backtrack from state » in dfs_red(b, 3), this
counterexample is invalid for Mc-NDFs.

Finally, we note that Mc-NDFs in is presented in a form that eases
analysis of correctness: without superfluous details. For example, the pink variable of
states is separate from the color variable, which stores only the colors white, blue and
cyan. The two-bit color encoding of [SEO3] is thus dropped for a while. In the fol-
lowing section, we prove correctness of Mc-NDFs, after which we amend the algorithm
in [Section 5.4.4] with the extensions discussed in [Section 5.3l The allred extension is
shown to improve sharing between workers significantly.

5.4.3 Correctness Proof

In the current section, we provide a correctness proof for Mc-Nprs. For brevity and
understandability this proof is kept brief: Some lemmas are given at upfront, and the
reasoning in the proofs is kept coarse. A detailed proof can be found in
We assume that each line of the code above is executed atomically. The global state
of the algorithm is the coloring of the input graph B and the program counter of each
worker.

We use the following notations: The sets White;, Cyan;, Blue; and Pink; contain all
the states colored white, cyan, blue, and pink by worker i, and Red contains all the red
states. E.g., if s.color[i] = blue, we write s € Blue;. It follows from the assignments
of the respective colors to the color variable that White;, Cyan; and Blue; are disjoint.
Also, we denote the state of one worker as dfs_red(s,i) @X, meaning that worker i is
executing 1.X in dfs_red for a state s. Finally, we use the modal operator s € [1X to
express that V¢ € NEXT-STATE(s): 1 € X.

Figure 5.2: An obstructed accepting cycle.



Correctness of Mc-NDFs hinges on the fact that it will never miss all reachable ac-
cepting cycles, i.e. it will always find one if one exists. Recall from that
NbFs ensures that all reachable states are visited only once by both dfs_blue and dfs_red.
Mc-NDFs ensures that each reachable state is visited at least once by both some dfs_blue
and dfs_red, therefore for a reachable a € F, there is at least one dfs_red(a, i) @ for
some i, that initiates the recursion of the dfs_red.

This recursion continues at [Cine[T19] where it tries to find a r € Cyan; at
that would close the cycle. Now, if the cycle a —T a exists, worker i will either find
at € Cyany, or is obstructed because it encounters a ¢ € Red at [Line|18| [Figure 5.2|
illustrates that workers can obstruct each other from finding cycles. For example, it
is possible that a worker 1 initiates a dfs_red for a;, marking r red. Then, a worker 2,
with a different NEXT—STATE? , could start a dfs_red for a; and be obstructed from finding
cycle {ay,r1,s}.

We first state invariants that express basic relations between the colors in Mc-NDFs.
These invariants are proven in the full proof which is presented in[Appendix[A:1] Then,
after[Cemma 5.1] we prove the crucial insight (Theorem 5.1, the algoritm’s termination
(Theorem 3.2) and soundness and completeness (Theorem 5.3)), i.e. when a counterex-

ample is reported, an accepting cycle indeed exists, and when an accepting cycle exists
in the graph, the algorithm will report a counterexample.

L1. Vi: Blue; U Pink; C O(Blue; U Cyan; URed) (see|Lemma A.6|and [A.12)
L2. Red C O(Red U\J;(Pink;\ Cyan;)) (see[Lemma A.10)
L3. Vi,a€ F: a € Blue; = a € Red (see[Lemma A.13)
L4. Vi,a € F: a € (Pink;\ Red) = a € Cyan; (see[Lemma A.15)
L5. Vi: Pink; C (Blue; U Cyan;) (see[Lemma A1)

Lemma 5.1. The following invariant holds for Mc-Nprs: Vs € Red,a € F \ Red: s —*
a = (3i,p € Pink;,c € Cyan;: s =+ p “Red t¢ =% q)

Proof. We show that the property follows from the previous invariants L1-4. Assume
s —* a for some s € Red and a € F with a & Red. Let s’ € Red be the last red state on
the path s —* a. Then, since s’ # a, it has a successor t € Red in this path. By L2 we
obtain t € Pink; for some worker i, so let p :=t.

Note that t # a, otherwise by L4 t € Cyan; and by L2 ¢ & Cyan;. So we find another
successor ¢’ such that s —* s/ — t — ' —* a. Assume towards a contradiction that no
state on the path ' —* g is in Cyan;; recall that t' —* g contains no Red states either.
Then by L1, all states on ¢’ —* a are in Blue;. But then also a € Blue; and by L3,
a € Red, a contradiction. So there exists a ¢ € Cyan; with s —* p =7 ¢ —=* a. O
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Figure 5.3: Snapshot of the cycle in the last “obstructed cycle search”. Edges with *, +
indicate paths of length > 0 and > 0. Dotted arrows denote node colors and —Red, + a
path without red.

Theorem 5.1. Mc-nprs cannot miss all accepting cycles.

Proof. Assume an Mc-NDFs run would miss all accepting cycles. Since there are
only finitely many cycles, we can investigate the last “obstructed cycle” in this run,
i.e., the last time that a dfs_red (which originated from some accepting state a on a
cycle) encounters Red. That is, we are in dfs_red(s, i) @ but we see ¢ € Red, although
s—t—"a.

Note that a ¢ Red: Just before dfs_red(a, i) a.count was increased by [Line[10]
Therefore, no other worker can make a red, because they are all forced to wait at

Hence we can apply , to obtain a path p “Red *¢ for some p € Pink; and
¢ € Cyan;. Itfollows that there is an d € F with ¢ —* @’ —* p (property of DFs stacks).
[Figure 5.3|provides an overview of the shape of the subgraph that we just discussed with
the deduced colorings.

But now we have constructed a cycle for worker j which has not yet been obstructed.
This contradicts the fact that we were considering the last obstructed cycle. We conclude
that there is no last obstructed cycle, hence there exists no run that misses all cycles. [

This proves partial correctness of Mc-NprFs. In order to prove that an accepting
cycle will eventually be reported, the algorithm is required to terminate.

53 A race condition can occur here, because worker i could increase a.count right after some worker j
passed the check at in dfs_red(a, j). Next, worker i would start its dfs_red(a,i), and find that
a € O(Red). So i will also make @ red and return from dfs_red. It does not matter whether i or j makes a
red first. Therefore, we can safely ignore such race conditions.



Theorem 5.2. Mc-nNprs always terminates with some report at[Line[3| or [Line[I7]

Proof. Assumingdfs_red terminates, we can conclude termination of dfs_blue from
the fact that for each worker i the set Blue; U Cyan; grows monotonically (blue is never
removed). Eventually, all the states are in the set and the blue search ends. Termi-
nation of the await statement at state follows from the basic observation that
every worker i can have at most one counter increment on some accepting state, which
is decremented atbefore waiting. Hence, when worker i is waiting, there can
be no other worker waiting for i. Finally, all red prss terminate because also the set
Red U Pink; grows monotonically. O

Theorem 5.3. Mc-nprFs reports cycle if there exists a reachable accepting cycle in the
input graph BB and it reports no cycle otherwise.

Proof. By the algorithm terminates with some report. If a cycle is re-
ported at[Cine[T7] by worker i, we find an s € Pink; and ¢ € Cyan; with s — . In that
case there is a state a € F on the stack such that r —* a —* s — t, so there is indeed an
accepting cycle.

Otherwise, if no cycle is reported at all workers have terminated without
reporting a cycle. By [Theorem 5.1|there is no accepting cycle in the graph. O

5.4.4 Extensions

We can improve Mc-~Nprs further. [Algorithm 5.4]presents Mc-NNDFs, which is Mc-NDFs
with the extensions discussed in First, we opted to extend Mc-NDFs with
allred [GS09]| (Cine[T6] and [Cine[24H28). Since the parallel workload of the Mc-NDFs
algorithm depends entirely on the proportion of the state graph that can be marked red
(see[Section 5.5.2), allred can improve the scalability. Second, early cycle detection in
dfs_blue is needed to compete with Scc-based algorithms. Finally, the
introduction of the two-bit color-encoding from [SEOS5]| for each worker will eliminate
the extra bit per worker used for the pink color.

Sketch of correctness. The allred extension in dfs_blue introduces a new red coloring

of a state s at|Line 28] affecting the proof of But, since s € O(Red), the

induction hypothesis can be applied for the successor ¢ of s. Furthermore, the proof

of also depends on the seed a not becoming red, i.e. a &€ Red, while
other workers are still performing a dfs_red for it. The allred coloring introduces a new

opportunity where this might happen. Therefore, allred coloring at[Cine[27] should be
delayed until a.count = 0, just like at[Line[I3]




Algorithm 5.4 Mc-NDFs with extensions (Mc-NNDFs)

1 proc mc_ndfs(s,N) 15 proc dfs_blue(s,i)
2 dfs_blue(s, 1)||..||dfs_blue(s,N) 16  allred := true
3 report no cycle 17 s.colorli] = cyan
18 for all 7 in NEXT-STATE?(s) do
4 proc dfs_red(s,) 19 if t.color[i]=cyan N\
5 s.colorli] = pink 20 (se FVIEF)
6 for all r in NEXT-STATE](s) do 21 report cycle & exit all
7 if t.colorli]=cyan 22 if t.colorli|=white\—t.red
8 report cycle & exit all 23 dfs_blue(t,i)
9 if t.color|i] #pinkN—t.red 24 if —t.red
10 dfs_red(z,i) 25 allred := false
11 ifseF 26 if allred
12 s.count = s.count — 1 27 await s.count = 0
13 await s.count=0 28 s.red = true
14 s.red = true 29 elseifs e F
30 s.count = s.count + 1

31 dfs_red(s,i)
32 s.colorli] := blue

Due to the early cycle detection at some accepting cycles can be de-
tected already in the blue search: At[Cine[20} via the properties of the blue DFs stack,
we have: s; —»*t —*s >t witht € FVse F.

The two-bit color encoding overwrites the value of the s.color|i] at However,
L5 shows that only Cyan; and Blue; are affected (not White;). The removal of s from
Blue; does not affect dfs_red, since it is insensitive to Blue;. The removal of s from Cyan;
seems more problematic, since cycle detection on depends on it. However, we
also know that the only case where s is removed from Cyan;, is in the initial dfs_red
call from [Cine[TT] (recursive dfs_red calls are never made on Cyan; states, since a cycle
would be detected at|Line|16{and |Line|19|would not have been reached). Hence, s € F.
It turns out that if there exists a path 7 = s —* s with (7 \ s) N Cyan; = 0, this accepting
cycle would have been detected by early cycle detection in dfs_blue (s; —* s —* 5" — s
with s € F). Hence, we do not need any provisions to fix the removal of s from Cyan;.
This fact was overlooked by Schwoon et al.[SE0S; |GS09], leading them to complicate

their NNDFs algorithm with delayed red coloring of accepting states.




5.5 Experiments

We implemented NNDFs, multi-core SV NNDFs and Mc-NNDFs in the multi-core backend
of the LTSMin model checking tool suite [LPW11a]. This enabled us to use the same
input models (without translation) and the same language frontend (compiler). We also
implemented randomized NEXT-STATE; functions to direct threads to different regions of
the state space, as discussed in [Section 5.4.1]

We performed experiments on an AMD Opteron 8356 16-core (4 x 4 cores) server
with 64 GB RAM, running a patched Linux 2.6.32 kernel. All tools were compiled us-
ing gcc 4.4.3 in 64-bit mode with high compiler optimizations (-03). For comparison
purposes, we used all 453 models with properties of the BEem database [Pel07]]. To
mitigate random effects in the benchmarks, runtimes are always averaged over 6 bench-
mark runs. We compared Mc-NNDFs against multi-core SV NNDFs to answer the ques-
tion whether a more integrated multi-core approach can win against an embarrassingly
parallel algorithm. Furthermore, we compared with the best existing parallel LTL MC
algorithm OTF_OwcTy, as implemented in DIVINE 2.5.1 [Bar+10].

Due to the on-the-fly nature of LTL algorithms, we distinguish models containing
accepting cycles from models that do not contain them. On the former set, algorithms
that build the state space on-the-fly and terminate early when a counterexample can be
found, are expected to perform very well.

5.5.1 Models with Accepting Cycles

We demonstrate the merits of multi-core SV NNDFs by comparing the runtimes with the
sequential NNDFs. As expected, SV speeds up the detection of accepting cycles (crosses
in[Figure 5.4) significantly compared to sequential NNDFs runs. We do not expect to see
perfect speedups (16 x on 16 cores) across all benchmarks, since the search is undirected
and some threads traverse parts of the state space which do not contribute to finding a
cycle. However, for some models, multi-core SV NNDFs does exhibit perfect speedups,
or even superlinear speedups. Due to randomization, multiple workers are more likely
to find counter examples[Dwy+07; |SGO3|.

Both multi-core SV NNDFs and Mc-NNDFs find accepting cycles roughly within the
same time (Figure 5.3)), there is only a small edge for Mc-NNDFs (most crosses are in
the upper half of the figure), due to work sharing effects. Apparently, the global red
coloring does not cause much “obstruction” (see[Section 5.4.3).

We isolated those runs of Mc-NNDFs on models with cycles, that have a runtime
longer than 0.1 sec, because only those yield meaningful scalability figures.
on the next page shows that these models scale very well (the figure is cut off after a
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Figure 5.6: Model counts of speedups with Mc-NNDFs (base case: sequential NNDFs)

speedup of 20, but it extends well beyond speedups of 100). Out of 50 models with
cycles (and runtimes > 0.1 sec), =~ 50 % exhibit at least six-fold speedups and a few
exhibit superlinear speedups (factor > 16).

Finally, a comparison with OTr_OwcTy unsurprisingly shows that Mc-NNDFs finds
counterexamples much faster (crosses in [Figure 5.7), due to its depth-first on-the-fly
nature, while OTF_OwcTy is only heuristically on-the-fly.

150



5.5 Experiments

5.5.2 Models without Accepting Cycles

For models without accepting cycles, on-the-fly algorithms lose their edge over other
algorithms, as the state space has to be traversed fully. We demonstrate this with our
multi-core SV NNDFs benchmark runs, which degrade timewise to sequential NNDFs
(dots in[Figure 5.4). We note that multi-core SV NNDFs causes little overhead compared
to the sequential NNDFs version, hence it would be safe to run multi-core SV if the
presence of a counterexample is uncertain.

However, when comparing multi-core SV NNDFs against Mc-NNpFs (Figure 5.3,
we observe significant speedups, in some cases more than ten-fold (dotted line) on
16 cores. Again, we isolated the runs of Mc-NNDFEs on models without cycles that run
more than 0.1 sec (Figure 5.6). We observed at least ten-fold speedups for 5 models
out of 91 such models (the y axis of the figure is cut off). In the BEEm database, we
verified the nature of the 20 models that exhibit speedup greater than factor two. These
include: leader election and other communication protocols, hardware models, con-
trollers, cache coherence protocols and mutual exclusion algorithms (see[Table 5.2).

reveals that Mc-NNDFs can mostly keep up with the performance of
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Figure 5.7: Log-log scatter plot of Mc-NNDFs/ OTF_OwcTy runtimes. Above the diag-
onal Mc-NNDFs wins, below Otr_Owcty wins.
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Table 5.2: Mc-NNDFs runs with speedup > 2 for models without cycles

Model ‘ Speedup (16)
leader_filters.6.prop2 13,17
leader_election.5.prop2 12,63
leader_election.4.prop2 12,26
leader_election.6.prop2 12,16
leader_filters.7.prop2 12,05
leader_election.3.prop2 10,87
leader_filters.5.prop2 9,92
leader_filters.3.prop2 6,74
leader_election.2.prop2 5,90
protocols.4.prop2 5,51
leader_election.1.prop2 5,24
leader_filters.4.prop2 5,00
protocols.5.prop4 4,84
leader_filters.2.prop2 4,69
protocols.4.prop4 3,82
lifts.6.prop2 2,68
lifts.3.prop2 2,33
rether.3.prop5 2,14
szymanski.2.prop4 2,08
rether.5.prop5 2,08
rether.7.prop5 2,01

Otr_Owcty. However, on some models without accepting cycles DIVINE is faster by a
factor of 10 on 16 cores. Which algorithm performs best in these cases likely depends
on model characteristics, which we have yet to investigate.

However, we did investigate the lack of Mc-NNDFs scalability for some models with-
out cycles in All these cases lack states colored red by dfs_red. However,
this does not hold the other way around: many models with few of these red states still
exhibit speedups. This can be attributed to the red coloring by the allred extension
(which we counted separately). In fact, for all models without cycles, the proportion of
states colored red by dfs_red turned out to be negligible, while allred accounts for the
vast majority of the red colorings.

We found that the number of red colorings is strongly dependent on the exploration
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Figure 5.8: Exploration order can influence ry

order (NEXT-sTATE;). [Figure 5.8]illustrates that this is indeed possible. If a search ad-
vances first from s through ¢, then ¢ (and s) cannot be colored red. However, if a is
visited first, then u becomes red, hence later also ¢ and s. It would be interesting to find
a heuristic that maximizes red colorings.

We also observed that the speedup Sy is dependent on the fraction of red states ry,
as can be expected from the fact that ry is the fraction of work that can be parallelized:
Sy ~ T,rqu(lfrzs/T;eJZTsequN/N = 17(1711/N)rN’ where Ty, x (1 —ry) is duplicated work.
This shows us that the algorithm barely waits for a long time at[Cine[22] which is also
confirmed by direct measurements.

5.6 Conclusions

In the current chapter, we introduced a multi-core NDFs algorithm, starting from a multi-
core SV version, and proved its correctness. Its time complexity is linear in the size
of the input graph, and it acts on-the-fly, addressing an open question put forward by
Holzmann et al. and Barnat et al. [HBO7; | BBR09al]. However, in the worst case, each
worker might still traverse the whole graph. We showed empirically that the algorithm
scales well on many inputs. The on-the-fly property of Mc-NNDFs, combined with the
speedups on cycle-free models, makes Mc-NNDFs highly competitive to OTrF_OwcTy.

The experiments were needed because Mc-NNDFs is a heuristic algorithm: in the
worst case (no accepting states, hence no red states) no work is shared between workers
and the performance reduces to the SV version. However, in these cases no other known
linear-time parallel algorithm obtains any speedup (including dual-core Nprs [HBO7]).

The space complexity of Mc-NNDFs remains decent: per state 2 x N local color bits,
log, (N) bits for the count variable, and one global red color bit, with N workers. The
count variable could be omitted, at the expense of inspecting the pink flags of all other
workers. However, this would lead to a significant contention. The overhead of log, (N)
bits per state is insignificant next to the space required by the local colors.
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Final remark. We have strong indications that Mc-NNDFs can be improved.

First, the previous section showed that a heuristic for exploration order might be
of great benefit for the scalability. In we investigate the influence of the
exploration order better using different models.

Second, at the time of the publication of the work presented in the current chapter,
a paper by Evangelista et al. was published describing a similar algorithm. This rival
algorithm uses however a very different approach, and therefore in [Chapter 6| we show
how these algorithms can be combined. [Chapter 7] presents again an improvement on
this combined algorithm that is better integrated and reduces memory usage (CNDFS).
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Variations on Multi-Core Nested Depth-First Search

Alfons Laarman, Jaco van de Pol

Abstract

Recently, two new parallel algorithms for on-the-fly model checking of LTL
properties were presented at the same conference: Automated Technology for Ver-
ification and Analysis, 2011. Both approaches extend Swarmed Nprs, which runs
several sequential NDrs instances in parallel. While parallel random search already
speeds up detection of bugs, the workers must share some global information to
speedup full verification of correct models. The two algorithms differ considerably
in the global information shared between workers, and how they synchronize.

Here, we provide a thorough experimental comparison between the two algo-
rithms on a multi-core machine. Both algorithms were implemented in the same
framework of the model checker LTSmiN, using similar optimizations, and have
been subjected to the full BEEm model database.

Because both algorithms have complementary advantages, we constructed an
algorithm that combines both ideas. This combination clearly has an improved
speedup. We also compare with the alternative parallel algorithm for accepting
cycle detection OTr_Owcry. Finally, we study a simple statistical model for input
models that do contain accepting cycles. The goal is to distinguish the speedup due
to parallel random search from the speedup attributable to work sharing.

About this chapter: The current chapter is based on the paper “Variations on Multi-
Core Nested Depth-First Search”, which was published at PDMC 2011 |[LP11].
The original text was not modified, except for the fix of the multi-core NDFs algorithm

that was also applied in the previous chapter, as explained in the ‘about’ section of
that chapter. Also, the general introduction was removed.

Note that presents a superior algorithm.



6.1 Introduction

During the last decades, processor speeds have been greatly increased, making model
checkers much more powerful. Where early papers on model checking discussed the
verification of models with a few thousand states, currently we can easily handle billions
of states (see . Recently, however, these advances are grinding to a halt, because
of physical limits inside the CPU cores. Instead, the number of logical computing cores
increases. Nonetheless, model checking can still benefit from the progress made by
CPU manufacturers, if the algorithms are parallelized.

A complication is that prs (and thus Nprs) is inherently sequential [Rei85[. Bar-
nat et al. have therefore introduced breadth-first search (Brs) based algorithms, such
as Maximal-Accepting-Predecessors (Map [|Bri+04])) and One-Way-Catch-Them-Young
(Owcry [CPO3|)). These algorithms deliver excellent speedups, but sacrifice linear-time
complexity. However, their latest combined OTF_OwcTty algorithm [BBR(9al, is linear-
time for the class of weak LTL properties and also useful for bug hunting. It is therefore
the current state of the art in multi-core LTL model checking.

Recently, also two parallel Nprs-based algorithms were introduced [EPY 11;Laa+11]]
(the latter is described in[Chapter 5). Both take as starting point a randomized parallel
search by a swarm of Nprs workers. While this is useful for bug-hunting, it does not
really help in the absence of bugs, in which case all workers traverse the full state space.
To improve speedup, both algorithms share some global information between workers,
in order to reduce the amount of work even in the absence of accepting cycles. ENDFs
from Evangelista et al. [EPY11]] shares a lot of information, but this may break the re-
quired prs order. A sequential repair procedure steps in when a potentially dangerous
situation is detected. On the other hand, LNDFs from[Chapter 5|shares less global infor-
mation and adds extra synchronization. This avoids dangerous situations and the need
for a repair strategy. However, this leads to a reduced amount of work sharing in some
cases.

Contributions. The main goal of the current chapter is to experimentally compare
both multi- core Nprs algorithms. In order to enable a fair comparison, we extended
ENDFs with the same optimizations as used in LNDFs. We implemented both algorithms
in the same framework of LTSmin. Finally, we subjected both implementations to the
full BEem benchmark database [[PelO7]], running them on shared memory machines with
up to 16 cores. Note that actual runtimes had not yet been reported for ENDFs, although
workload distributions were shown in [EPY11]]. Also, for LNDFs, we have rerun the

experiments from

Another contribution is a simple combination of the ENpFs and LNDFs algorithms,



improving the speedup compared to both of them. We also compare all mentioned al-
gorithms with the OTrF_OwcTy algorithm, both for bug hunting and for full verification.
Finally, based on a simple statistical model [HINOS]], we investigate how much of the
speedup in the parallel Nprs algorithms should be contributed to the effects of parallel
random search and what is the contribution of the more clever work sharing schemes.

The algorithms are explained in[Section 6.2] The experimental results are presented
in [Section 6.3| [Section 6.4] contains the discussion on parallel random search. Our
conclusions are summarized in[Section 6.5

6.2 Parallel Algorithms to Detect Accepting Cycles

Model checking properties from Linear Temporal Logic (LTL) entails verifying that all
runs of a given system satisfy some safety or liveness property. In the automata-theoretic
approach [VWS86; [BKOS|, a Biichi automaton is constructed that accepts all infinite
words corresponding to those runs of the original system that violate the property. So the
problem is reduced to the emptiness check of w-regular languages. A Biichi automaton
accepts a word if it visits some accepting state infinitely often. For finite automata, this
implies that there is a cycle through some accepting state.

Definition 6.1. A Biichi automaton is a quadruple B = (S, s;, NExT-sTATE, F ), where S
is the finite set of states, s; € S is the initial state, NEXT-STATE : S — 25 the successor
Sfunction, and F C S the set of accepting states.

Note, that the use of the NEXT-STATE function reflects the way in which the Biichi
automaton is computed on-the-fly from the input model. When appropriate, we refer to
the complete automaton as graph or state space.

The purpose of all algorithms in the current chapter is to detect an accepting cycle
in this graph. For states s, € S, we write s — ¢ if ¢ € NEXT-STATE(s), and —T (—*),
for its (reflexive) transitive closure. An accepting cycle is some state a € F, which is
reachable from the initial state (s; —* a) and lies on a non-trivial cycle (@ —" a).

6.2.1 Nested Depth-First Search

The first linear-time algorithm to detect accepting cycles was proposed by Courcoubetis
etal. [Cou+92] and is referred to as Nested Depth-First Search (NDFs). NDFs also enjoys
the on-the-fly property. This means that the algorithm can terminate as soon as a cycle is
detected, without the need to visit (or even construct) the whole graph. This makes Nprs
very suitable for bug hunting, besides its use for full verification. Various extensions




Algorithm 6.1 The (sequential) New NpFs algorithm adapted from [SEOS]]

1 proc nndfs(s) 11 proc dfs_blue(s)
2 dfs_blue(s) 12 s.color := cyan
3 report no cycle 13 for all # in NEXT-STATE(s) do
14 if t.color = cyan and (s € FVt € F)
4 proc dfs_red(s) 15 report cycle & exit
5 s.color = red 16 if ¢.color = white
6 for all 7 in NEXT-STATE(s) do 17 dfs_blue(t)
7 if ¢.color = cyan 18 ifse F
8 report cycle & exit 19 dfs_red(s)
9 else if ¢.color = blue 20 else
10 dfs_red(t) 21 s.color = blue
and optimizations to Nprs have been proposed [HPY96}, [SE05}, [GS09].

most closely resembles New Nprs [[SEOS].

In[Algorithm 6.1} nndfs (s;) initiates a blue prs from the initial state, so called since
explored states are colored blue (we assume that initially all states are white). A newly
visited state is first colored cyan (“it is on the DFS-stack™), and during backtracking
after exploration, it is colored full blue. However, if at[Line[I8]the blue prs backtracks
over an accepting state s € F, then dfs_red(s) is called, which is the nested red DFs to
determine whether there exists a cycle containing s. As soon as a cyan state is found
on[Cine[7} an accepting cycle is reported [HPY96} [SEO3]. In the blue prs, early cycle
detection is possible, at[Cine[I4][T5] Due to early cycle detection, it does not matter that
the cyan color of s is overwritten by red at[Line[5] (see[Section 5.4.4).

Nbprs runs in linear time, since each reachable state is visited at most twice, once in
the blue pFs and once in a red prs. The correctness of NDFs essentially depends on the
fact that the red DFss are initiated on accepting states in the postorder imposed by the
blue prs. So the red search will never hit another accepting state that is not already red.

6.2.2 Embarrassing Parallelization: Swarmed NDFs

The inherently DFS nature of the blue search makes Nprs hard to parallelize, since
computing the postorder is a P-complete problem [Rei85]. One response has been to
develop entirely different algorithms based on Breadth-First Search, cf. Sec.[6.2.6]
Another approach would be to simply run N isolated instances of Nprs
in parallel, in the hope that this swarm of Nprs workers will detect accepting



cycles earlier [HJGO8; Laa+11]]. Local permutations of the NEXT-STATE function direct
the workers to different regions of the state space, so their search becomes independent.
With NEXT—STATE? (NEXT-STATE]) we denote the permutation of successors used in the
blue (red) prs by worker i. analyses the expected and actual improvements
due to parallel randomized search.

Although Swarmed NpFs is expected to be profitable for bug hunting, it does not
show a speedup in the absence of accepting cycles, in which case all workers have to
go through the complete state space. Indeed, the worst-case complexity of all parallel
Nprs variations in the current chapter is O(| — |- |N|), i.e. linear both in the size of the
Biichi automaton and in the number of workers.

To improve average speedup, some more synchronization between the workers is
needed. Note that a naive global sharing of colors between multiple workers would be
incorrect, because it would destroy the postorder properties on which Nprs relies. Next,
we discuss two recent proposals for sharing information between the Nprs workers.

6.2.3 LNbrs: Sharing the Red Color Globally

The basic idea behind LNDFs in[Algorithm 6.2]is to share information in the backtrack
of the red Drss. A new pink color is introduced at [Cine[5]to signify states on the stack
of a red DFs, analogous to cyan for a blue prs. The cyan, blue and pink colors are all
local to worker i, but the red color is shared globally. On backtracking from the red
DFs, states are colored red at[Line[T4] These red states are ignored by all blue and red
Drss (Cine2T]9), thus pruning the search space for all workers i. To improve pruning
during the blue search, the amount of red states is even increased by the all-red extension
from [[GS09] (Cine[T6]and [Cine[23}27).

To ensure correctness, it is necessary to synchronize the red coloring of accepting
states (see . Otherwise, the algorithm is incorrect for more than two workers
(see[Section 5.4.2] which provides a correctness proof for N > 0 workers). Scalability
of the LNDFs algorithm could be hampered by the need for synchronization, but waiting
is only needed when multiple workers start a red search from the same accepting state;
this is rare in practice. Another reason for limited scalability is that work is only pruned
when states can be marked red. Despite the all-red extension, for input graphs with no
(or very few) accepting states, all workers still have to traverse the whole graph.

6.2.4 ENprs: an Optimistic Approach with Repair Strategy

The basic idea of ENDFs in [EPYTI] is to share both the blue and the
red colors globally; only the cyan and pink colors are local per worker. We deviate
from the description in [EPY11] by adding a cyan stack and early cycle detection as




optimizations, because this enables a fair comparison with LNDFs. Consequently, we
also renamed the local colors.

Sharing the blue color can lead to problems, as the postorder is not preserved by the
algorithm. ENDFs optimistically proceeds, but if it encounters accepting states that are
not yet red during the red search, they are marked dangerous at Eventually,
dangerous states are double-checked in a repair stage, by a separate sequential Nprs
using worker-local colors only, at Note that for technical reasons, states
are not colored red during backtracking, but just collected in the thread-local set R; at
Only after termination of the red pFs they are made red (provided they are not

dangerous) at

Scalability of the ENDFs algorithm could be hampered by the repair stage, because
this proceeds sequentially. Also, marking states red occurs relatively late, potentially
leading to more duplicate work within the red pFs.

Algorithm 6.2 The LNDFs algorithm, pruning blue and red prs by a global red color,
adapted from

1 proc Indfs(s,N) 15 proc dfs_blue(s, i)
2 dfs_blue(s, 1)||..||dfs_blue(s,N) 16 allred := true
3 report no cycle 17 s.color[i] := cyan
18 for all t in NEXT-STATE?(s) do
4 proc dfs_red(s, i) 19 if t.color[i] = cyan and (s € FVt € F)
5  s.colorli] = pink 20 report cycle & exit all
6 for all t in NEXT-STATE](s) do 2 if 7.color[i] = white \ —t.red
7 if z.color|i] = cyan 22 dfs_blue(t,i)
8 report cycle & exit all 23 if —t.red
9 if r.colorli] # pink \—t.red 24 allred = false
10 dfs_red(t, i) 25 if allred
11 ifseF 26 await s.count = 0
12 s.count = s.count — 1 27 s.red = true
13 await s.count =0 28 elseifse F
14 s.red = true 29 s.count = s.count + 1

30 dfs_red(s, i)
31 s.colorli] = blue




6.2.5 A Combined Version: New Mc-NDFs

We have recapitulated two very recent Mc-NDFs algorithms, which both seem to have
their merits and pitfalls. ENDFs, in the end, resorts to a sequential repair strategy, but it
avoids some work duplication due to the global blue color. LNDFs does not need a repair
strategy, but the blue DFs is only pruned when there are sufficiently many red states, and
the algorithm may have to wait for synchronization. A simple idea suggests itself here:
we could combine the two algorithms and try to reconcile their strong points. The idea
is simply to run the optimistic algorithm, i.e. but when dangerous states
are encountered at[Line[30] we call the parallel algorithm LNDFs (rather than NDFs).

We expect an improved speedup, because using ENDFs ensures good work sharing,
even in the absence of accepting states. And using LNDFs parallelizes the repair strat-
egy, avoiding the important sequential bottleneck of ENDFs. In the actual implementa-
tion, we also used a simple load balancing strategy: when a worker finishes ENDFs, it
starts helping other workers still in their LNDFs repair phase.

Algorithm 6.3 The optimistic ENprs algorithm, marking dangerous states, adapted
from [EPY11].

1 proc endfs(s,N) 14 proc dfs_blue(s, i)

2 dfs_blue(s,1)]|..||dfs_blue(s,N) 15 s.cyanli] = true
3 report no cycle 16  for all  in NEXT-STATE?(s) do
17 if .cyan[i] and (s € FVi € F)
4 proc dfs_red(s, i) 18 report cycle & exit all
5  s.pink[i] := true 19 if —t.cyanli] A -t .blue
6 R;i=RU{s} 20 dfs_blue(z,7)
7  for all 7 in NEXT-STATE](s) do 21 s.cyanli] := false
8 if 7.cyanli] 22 s.blue = true
9 report cycle & exit all 23 ifseF
10 ift € FA—t.red 24 R =0
11 t.dangerous ‘= true 25 dfs_red(s, )
12 if ~t.red A=t pinkli] 26 forall r € R; do
13 dfs_red(s, ) 27 if —r.dangerousVs=r
28 r.red ‘= true
29 if s.dangerous
30 nndfs(s, i)




6.2.6 One-Way-Catch-Them-Young with Maximal Accepting
Predecessors

In the next section, we will compare the performance of the various Nprs implemen-
tations in terms of their absolute timing and speedup behavior. We will also compare
them with the current state-of-the-art algorithm in parallel symbolic model checking,
Otr_Owcrty [BBR09a] by Barnat et al., which is a member of the branch of Brs-based
algorithms (other algorithms in this class are discussed in[Section 5.3).

Basically, it extends the One-Way-Catch-Them-Young algorithm (Owcty (CPO3]),
with an initialization phase incorporated from the Maximal-Accepting-Predecessor al-
gorithm (Map [Bri+04]). In a nutshell, Map iteratively propagates unique node iden-
tifiers to successors. As soon as an accepting state receives its own identifier, a cycle
is detected. OwcTy is based on topological sort and iteratively eliminates states that
cannot lie on an accepting cycle, because they have no predecessors.

These algorithms are generally based on Brs, which is more easy to parallelize
than prs. However, these algorithms sacrifice linear-time behavior and the on-the-fly
property. The resulting combination is linear-time for Biichi automata generated from
the class of weak LTL properties, and shows on-the-fly behavior for several cases.

6.3 Experiments

We implemented multi-core Swarmed Nprs and [Algorithm 6.2] and [Algorithm 6.3in
the multi-core backend of the LTSmin model checking tool suite [LPW11a; BPW10;
BPWO9]FI] We performed experiments on an AMD Opteron 8356 16-core (4 x 4 cores)
server with 64 GB RAM, running a patched Linux 2.6.32 kernel. All tools were com-
piled using gcc 4.4.3 in 64-bit mode with high compiler optimizations (-03).

We measured performance characteristics for all 453 models with properties of the
Beewm database [PelO7] and compared the runs with the best known parallel LTL model
checking algorithm OTr_OwcTy as implemented in DIVINE 2.5 [Bar+10]. In fact, we
used the latest release available from the development repository on 23 March 2011,
which was close to the 2.5 version, except for a few relevant bug fixes.

Note that OTr_OwcTy has been implemented in D1VINE, whereas all Nprs-based
algorithms have been implemented in LTSmIN. This should be taken into account when
comparing absolute runtimes. LTSmin implements a generic interface around the fast
implementation of the Next-sTaTE() function of DIVINE, resulting in sequential run-
times that can be twice as slow. On the other hand, LTSwmin internally uses shared hash
tables, which are shown to scale better, at least for reachability (see [Chapter 2)).

6.1 Available on the LTSmiIN website: http://fmt .cs.utwente.nl/tools/ltsmin/|


http://fmt.cs.utwente.nl/tools/ltsmin/

6.3 Experiments

To account for the random nature of the algorithms, all experiments were executed
a total of 5 times. The data presented in the following subsections reflect the average
over those 5 experiments.

6.3.1 ENbrs Benchmarks

Evangelista et al. [EPY11]] used workload distribution measurements to estimate the

scalability of ENpFs. [Figure 6.2]reflects their estimated speedups. shows the

speedups that we obtained by measuring real runtimes of the algorithm.
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Figure 6.1: Measured speedups ENprs.  Figure 6.2: Speedups ENDrs in [EPY11]].

A comparison with the estimated speedups shows that the trend of the lines has been
accurately predicted in most cases. A case by case comparison, however, shows some
divergence between the exact numbers: models that scale well in “synthetic” bench-
marks of as, e.g., anderson.6.propd, elevator2.3.prop4,
leader_election.6.prop2 and szymanski.4.prop4, do not scale well in
practice. We have not investigated the source of these differences, but apparently the
amount of dangerous states is quite sensitive to implementation parameters.

[Figure 6.3|and|Figure 6.4/compress the results from all models of the BEEm database
in log-log scatter plots. In both figures, we show models without accepting cycles as
dots and models with these cycles as crosses. Comparing ENDFs to NDFs in the first
figure, we can distinguish good speedups for the models with cycles, while the other
figure shows that ENDFs even improves the results of Swarmed NpFs a little. In
we investigate and compare these effects more thoroughly, using a statistical
reference model for random parallel search. As for the models without accepting cycles,
we see that most do scale with ENDFs, but hardly beyond a speedup of 10. Even though
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Variations on Multi-Core Nested Depth-First Search

theoretically possible, we identified no cases where the repair strategy of ENDFs yields
speed downs (in the worst case, all workers can traverse the state space 4 times).

We also investigated what caused some inputs to scale poorly. shows
the percentage of the state space that is covered by the repair procedure. As expected, a
high percentage was measured for all models with poor scalability. [Figure 6.6|shows the
cumulative additional work performed by all workers, by summing up the states visited
by all workers in the repair procedure and dividing by the total amount of states (|S|). It
is worrisome that the need for repair can increase faster than the number of cores. This
suggests that the ENDFs may not scale to many-core systems.

6.3.2 ENDFrs versus LNDFs

shows the speedups of the LNDFs algorithm. In this set of models, few scale
well with this algorithm. The flat lines represent models with relatively few states reach-
able from accepting states. In these cases, the algorithm can only color few states red,
thus limiting work sharing between the workers. As shown in [Chapter 3] the fraction
of red states is indeed directly related to the speedup that is obtained. The two mod-
els leader_filters.7.prop2 and leader_election.6.prop2 have state
spaces that are colored entirely red, and hence exhibit almost ideal linear speedups.
However, shows that only few models behave this ideally. Unfortunately,
in we reported better speedups, which we have now tracked down to an im-
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Figure 6.3: NDFs vs ENDFs. Figure 6.4: Swarmed NpFs vs ENDFs.
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Figure 6.5: % of state space in ENDFs repair.  Figure 6.6: Cumulative extra repair work.

plementation error that led to too many red states.

When comparing ENpFs to LNDFs in[Figure 6.10] we witness a few ties (on the thick
line), a few winners with LNDFs and by far the most winners with ENprs. We looked up
the models that draw a tie and found that all of them scale with both algorithms. These
are therefore not in need of improvements. Most interestingly, the models that scale well
with LNDFs correspond to those that do not scale with ENprs. This indicates that both
algorithms are complementary. A fact that is indeed to be expected, because the same
accepting states that cause states to be colored red in LNDFs, are potentially marked
dangerous in ENprs. This motivated their combination as described in[Section 6.2.3]
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6.3.3 NMc-NDFs Benchmarks

Figure 6.10: ENDFs vs LNDFs.

In the current subsection, we investigate our ENpFs and LNDFs combination: NMc-NDFs.

[Figure 6.8|shows that NMc-NDFs improves upon the speedups of ENDrs (see[Figure 6.1),
and [Figure 6.13|confirms that all models scale well with the combined algorithm.
For NMc-NDFs, again, we also calculated the cumulative additional work as a per-

centage of the state space in[Figure 6.11] The state-space coverage by the repair proce-
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6.3 Experiments

dure is almost equal to that of ENDFs in[Figure 6.5 We can then deduce that the repair
work is parallelized well by LNDFs, because the cumulative additional work is close to
the percentage of state space coverage. This can be explained by the fact that LNDFs is
always called on a (dangerous) accepting state in NMc-~NDFs, which eventually leads to
a red coloring of the entire subgraph reachable from this accepting state. Under these
conditions LNDFs can be expected to scale well.

We also checked whether the new combination causes additional overhead, by com-
paring it directly with its predecessors in [Figure 6.13|and [Figure 6.14] The first figure
shows that no model runs faster with ENprs than with NMc-~NDrs, although in a few
examples LNDFs wins, as can be seen in the latter figure. This confirms that LNDFs and
ENDpDrs are complementary and their combination represents the best from both worlds.
Indeed, the combination ensures that for all inputs some speedup is obtained.

6.3.4 Parallel NbFs versus OwcTty-Mapr

[Figure 6.16/compares NMc-NpEs with Ote_Owcry. The comparison figures show that
the heuristic on-the-fly method of OTF_OwcTy is no match for the truly on-the-fly par-
allel Nprs algorithms. As for the models without accepting cycles, we can conclude
that currently NMc-NDFs provides a good match for OTr_Owcry, in particular for the

larger models. For the sake of completeness, we present here [6.18] com-
paring ENprs/LNDFs and Otr_Owcry. Furthermore, shows the absolute
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Figure 6.13: ENDFs vs NMc-NDFs. Figure 6.14: LNDFs vs NMc-NDFs.
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speedups of OTF_OwcTty using the sequential NDFs runtimes as the base case.
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6.4 Discussion on Parallel Random Search

As explained in the multi-core Nprs algorithms use a randomized NEXT-
sTATE( ) function to direct workers to different regions of the state space. In this section,

we want to explain the speedup for models with accepting cycles. In particular, we want
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to distinguish the effect of parallel random search, from the effect of the clever work
sharing algorithms.

Our starting point is a simple statistical model as found in [HINOS]. We view
Nprs(B,X) as an algorithm that runs on Biichi automaton 3 with random seed X, influ-
encing the order of traversing successors. We ran Nors(83,X) 500 times with random
X on a number of Biichi automata /. Each time, we measured f(83,X), the time that it
takes for Nprs(B,X) to detect an accepting cycle.

In we show the cumulative probability F(,¢) that one Nprs worker
will detect an accepting cycle in less than ¢ seconds for some examples from the BEEm
database. We can also define Fy(13,¢) as the cumulative probability that a swarm of N
independent workers will find an accepting cycle within 7 seconds. shows
Fi6(B,t) for the same automata. We also computed the expected time to completion
and the standard deviation. The new distribution can be easily computed as:

Fy(B,t)=1—(1-F(B,1))N

From [Figure 6.19] and [Figure 6.20] we observe that considerable gains can be ex-
pected from a simple parallelization as in Swarmed NpFs. It also shows that the actual

speedup depends highly on the models: when all runs find an accepting cycle in about
the same time (indicated by plateaus connected by a steep curve), the expected gain
is much less than when the curve is flatter, as is the case for anderson.8.prop3,
bakery.8.prop4 and peterson.6.propd.

Next, we want to compare our actual implementation with these predictions. To this
end, we compared the expected completion times with actual completion times, aver-
aged over 5 runs. We collected this information in In the first two columns
(Statistical model), we copied the averages from [6.20] for 1 and 16 work-
ers, and computed the expected speedup. Note that this speedup for 16 workers is way
below 16. Next, we experimented with four different scenarios described below.

The next column (Distributed), corresponds to Swarmed Nprs as it would run on
different machines in a GRID. Here the only synchronization would be to terminate
all workers as soon as the first worker has detected a cycle. The runtimes denote the
completion time for the earliest run out of 16 independent workers; we again provide the
average from 5 experiments. The corresponding speedups match closely to the predicted
ones from the statistical model.

Next, we ran the experiments on the multi-core machine with 16 cores described
before. Now the workers share the basic infrastructure. This is the same setting as the
multi-core Swarmed Nprs from the previous section. For instance, all states will be
stored only once in a shared hash table. Also, several workers now share information
in the L2 cache. On the other hand, they might now suffer from cache coherence over-
head or memory bus contention. The figures under “Shared Memory” show that the
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Figure 6.19: Cumulative prob. distribution of finding a bug (measured for 1 worker).
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Figure 6.20: Cumulative prob. distribution of finding a bug (calculated for 16 workers).

speedups in a multi-core environment are slightly better than on independent machines
(Distributed).

On multi-core machines it becomes easier to share information, in order to guide
different workers into different parts of the state space. In that case, one would expect
better speedup figures. We did an experiment with what we call the fresh successor
heuristic. Here a worker will randomly select a globally unvisited successor if that
exists, otherwise it randomly selects any successor. As the column Heuristic shows,
this can dramatically improve the speedup of 16 workers. In some cases, each time
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Table 6.1: Runtimes and speedups of bug hunting using embarrassingly parallel (ran-
domized) Nprs and LNprs. The first two columns of the table present the expected
completion time derived from 500 sequential experiments for 1 and 16 cores. The other
columns give parallel runtimes for, respectively, a distributed implementation, our ran-
domized shared-memory implementation [Laa+11], and another shared-memory im-
plementation using the fresh successor heuristic. The second row gives the speedups.

NbFs LNbDFs
1 core 16 core 16 core
ElEl g2 5
p= E= 2 3 = 3 =
model % % Aa % = % =
anderson.8.prop3 58.1139.0139.3|39.4| 96| 8.6| 3.1
bakery.7.prop3 50| 29| 29| 21| 06| 0.8]| 0.3
bakery.8.prop4 264114.7113.6|129| 06| 19| 1.1
Runtimes (sec) | elevator2.3.prop3 8.1 45| 42| 26| 0.7 2.1| 0.2
extinction.4.prop2 44| 1.1| 08| 05| 0.0| 0.0/ 0.0
peterson.6.prop4 33.8120.1|24.2116.7|12.5| 25| 2.2
szymanski.5.prop4 | 27.1[21.6/209|19.4| 0.0 33| 0.0
anderson.8.prop3 1.5 1.5 1.5] 6.1| 6.7|18.5
bakery.7.prop3 1.7 1.7 24| 86| 6.3|15.2
bakery.8.prop4 1.8 1.9| 2.0(45.7|14.1|23.2
Speedups elevator2.3.prop3 1.8 1.9| 3.1|11.7] 3.8|41.8
extinction.4.prop2 4.1 59| 89 7| 77| 77
peterson.6.prop4 1.7| 14| 20| 2.7|13.5|15.6
szymanski.5.prop4 1.3 1.3 14| 77| 83| 77

an accepting cycle was found in such a small instant that a meaningful speedup figure
could not be computed.
Finally, using LNDFs, the total amount of work is decreased, because workers prune




each other’s search space. Again, we experimented with two versions, which are shown
in the two right-most columns. We computed the average runtime of 5 experiments on
16 cores with the random shared-memory implementation. Note that this is the imple-
mentation that was used in all previous experiments in The figures show
again a big improvement over Swarmed NpFs, even on a multi-core machine. Inter-
estingly, the fresh successor heuristic also works very well for the LNDFs-algorithm,
speeding up the algorithm several times. Similar findings hold for all other parallel
Nbrs versions in the current chapter, because they behave similarly on models with
accepting cycles (see|Figure 6.13|and [Figure 6.14).

6.5 Conclusion

In the current chapter, we experimentally compared two recent parallel Nprs-based al-
gorithms, ENDFs [EPY11]] and LNDFs [Laa+11]]. We also compared them with Swarmed
Nprs and with the BFS-based algorithm Otr_Owcty [BBR09a]. We now summarize
the conclusions from our experiments.

For systems with bugs (accepting cycles), both ENprs and LNDFs outperform
Otr_Owcry by large, so they fully enjoy the on-the-fly property. We have also shown
that ENDFs and LNDFs perform much better than parallel random search, as in Swarmed
NDFs.

On examples without bugs, it appears that ENDFs beats LNDFs in most of the cases,
due to the fact that there are still too few red states to prune the blue search in LNDFs.
However, in a number of other cases ENDFs still scales rather badly, due to the fact that
the sequential repair strategy traverses large parts of the state space. Interestingly, it is
possible to use the parallel LNDFs algorithm as the repair strategy of ENprs. For this
new combined algorithm, all examples of the BEEm database showed a decent speedup.

On examples without bugs, OTF_OwcTy beats both LNDFs and ENDFs in a majority
of the cases, but still it is slower on a number of other examples. The combination of
ENprs and LNDFs, however, provided a good match for Otr_OwcrTy, especially for
the larger inputs. This shows that the new branch of parallel NprFs algorithms is rather
promising.

Future work. Although all Nprs-versions have been implemented in the same
framework so that we compare the algorithmic differences, OTF_Owcty was imple-
mented in the DIVINE tool. We note that our computation of the NExT-sTATE() func-
tion uses the same code as DIVINE. A reimplementation of OTr_OwcTy using shared
hash tables will probably increase its speedup, as indicated by results on pure reacha-
bility (see[Part II). For complex LTL properties, however, Otr_Owcty might exhibit



6.5 Conclusion

non-linear behavior. It would be interesting to compare the bahavior of the multi-core
Nprs algorithms for such cases (the properties used in the BEEm database are rather
simple).

Final note. In the next chapter, we show a parallel NpFs algorithm that can fully
share global information from both the blue and the red search, without the need to
resort to a repair strategy.
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Improved Multi-Core Nested Depth-First Search

Sami Evangelista, Alfons Laarman, Laure Petrucci, Jaco van de Pol

Abstract

The current chapter presents CNDFs, a tight integration of two earlier multi-
core nested depth-first search (NDpFs) algorithms for LTL model checking. CNDFs
combines the different strengths and avoids some weaknesses of its predecessors.
We compare CNDFs to an earlier ad-hoc combination of those two algorithms and
show several benefits: It has shorter and simpler code and a simpler correctness
proof. It exhibits more robust performance with similar scalability, while at the
same time reducing memory requirements.

The algorithm has been implemented in the multi-core backend of the LTSMIN
model checker, which is now benchmarked for the first time on a 48 core machine
(previously 16). The experiments demonstrate better scalability than other paral-
lel LTL model checking algorithms, but we also investigate apparent bottlenecks.
Finally, we noticed that the multi-core Nprs algorithms produce shorter counterex-
amples, surprisingly often shorter than their BFS-based counterparts.

About this chapter: The current chapter is based on the paper “Improved Multi-
Core Nested Depth-First Search”, which was published at the ATVA 2012 confer-
ence |Eva+12].

Building on the combination of of multi-core algorithms in the previous chapter, we
present a new integrated algorithm, called Cnors, with improved performance, re-
duced memory usage, and shorter correctness proof.

The original text from |Eva+12] has been improved by correcting an error in the basic
nested depth-first search algorithm (Algorithm 7.1). A missing check for cyan states
in the main DFS loop would cause the previously published algorithm to enter an
infinite loop. Also, the general introduction was removed.



7.1 Introduction

Some properties, like safety properties, rely on a complete enumeration of system states
and can thus be easily parallelized since they do not ask for a specific search order.
However, the problem is harder when it comes to the verification of linear temporal logic
(LTL) properties. LTL model checking can be reduced to a cycle detection problem and
state-of-the-art algorithms [Cou+92;|Cou99;|GV04|| proceed depth-first since cycles are
more easily discovered using this search order. However, this characteristic also makes
them unsuitable for parallel architectures since DFS is inherently sequential [Rei85].

One approach to address this issue is to sacrifice the optimal linear complexity pro-
vided by DFS algorithms and switch to BFS-like algorithms, which are highly scalable
both theoretically and experimentally. We compare our approach to the best represen-
tative of that family. More recently, two algorithms (LNDprs from [Chapter 5|and ENDFs
from [EPY11]]) adapted the well known Nested DFS (NpFs) algorithm [Cou+92] to
multi-core architectures. They share the principle of launching multiple instances of
Nprs that synchronize themselves to avoid useless state revisits. Although they are
heuristic algorithms in the sense that, in the worst case, they reduce to spawn multiple
unsynchronized instances of NDFS, the experiments reported in [Chapter 5] and [Chap-|

show good practical speedups.

The contribution of the current chapter is an improvement to both the LNprs and
ENDFs algorithms, called CnpFs. This new algorithm is both much simpler and uses
less memory, making it more compatible with lossy compression techniques such as
tree compression that can compress large states down to two integers. We
also pursue a thorough experimental evaluation of this algorithm on the models of the
Beewm database [Pel07] with an implementation of this algorithm on top of the LTSmin
toolset [BPW10; [LPW11a]. The outcome of these experiments is threefold. Firstly,
Cnprs exhibits a similar speedup to its predecessors, but achieves this more robustly,
with smoother speedup lines, while using less memory. Second, it combines nicely
with heuristics limiting the amount of redundant work performed by individual threads.
Finally, in the presence of bugs, it reports counterexamples that are usually much shorter
than those reported by Nprs and, more importantly, this length tends to decrease as more
working threads get involved in the verification. This property is quite appreciable from
a user perspective as it eases the task of error correction.

The outline of the current chapter is the following. In[Section 7.2) we formally ex-
press the LTL model checking problem and review existing (sequential and parallel) al-
gorithms that address it. CNDFs, our new algorithm, is introduced and formally proven

in Our experimental evaluation of this algorithm is summarized in
Finally, concludes the current chapter and explores some research




perspectives to this work.

7.2 Background

We give in this section the few ingredients that are required for the understanding of the
current chapter and briefly review existing works in the field of explicit parallel LTL
model checking based on the automata theoretic approach.

72.1 The Automata-Theoretic Approach to LTL Model Check-
ing

LTL model checking is usually performed following the automata-based approach origi-
nating from [VW86] that proceeds in several steps. In the current chapter, we focus only
on the last step of the process that can be reduced to a graph problem: given a graph
representing the synchronized product of the Biichi property automaton and the state
space of the system, find a cycle containing an accepting state. Any such identified
cycle determines an infinite execution of the system violating the LTL formula. In the
current chapter, we will only reason on automaton graphs that result from the product
of a Biichi property automaton and a system graph describing the dynamic behavior of
the modeled system.

Definition 7.1 (Automaton graph). An automaton graph is a tuple G = (S, T, F,s0),
where S is a finite set of states; T C S X S is a set of transitions;, F C S is the set of
accepting states; and so € S is an initial state.

Notations. Let (S, 7T,F,so) be an automaton graph. For s € S the set of its successor
states is denoted by succ(s) ={s' € S| (s,5') € T}. (s,5") € T is also denoted by s — s’
s =T s (s =* ') denotes the (reflexive) transitive closure of T, i.e. the fact that s’ is
reachable from s. A path is a state sequence s1,...,s, withs; = s;41, Vi€ {1,...,n—1},
a cycle is a path s1,...,s, with s1 = s, and a cycle C = sy, ...,s, is an accepting cycle
if CNJF # 0. An accepting run is an accepting cycle reachable from the initial state:
80y --58iy-..,8, where s; = s,. The LTL model checking problem consists of finding
an accepting run in an automaton graph. An LTL model checking algorithm proceeds
on-the-fly if it can report an accepting run without visiting all transitions.

7.2.2 Sequential LTL Model Checking Algorithms

Nprs [Cou+92] was the first LTL model checking algorithm proposed. It enjoys several
nice properties: an optimal linear complexity, the on-the-fly discovery of accepting




cycles and a low memory consumption (2 bits per state). Two variations of Tarjan’s
algorithm for SCC decomposition [Cou99; |GV 04] have also been proposed with similar
characteristics but we focus here on NpFs as our new algorithm is a direct descendant
of this one.

Algorithm 7.1 Nprs [VW86] as presented in [SEOS]].

1: procedure NDFs(s7) 9: procedure dfsBlue(s)
2: dfsBlue(sy) 10: s.cyan := true
3: report no-cycle 11: for all 7 in NEXT-STATE(S) dO
4 procedure dfsRed(s) 12: if —t.cyan N\ —t.blue then
5 t.red := true 13: dfsBlue(t)
6: for all 7 in NEXT-STATE(s) do 14: if s € 7 then dfsRed(s)
7 if t.cyan then report cycle 15: s.blue := true
8 else if —¢.red then dfsRed(t) 16: s.cyan := false
The pseudo-code of this algorithm is given by The algorithm per-

forms a first level DFS (the blue DES) to discover accepting states. When such a state
is backtracked from, a second level DFS (the red DFS) is launched to see whether this
accepting state (now called the seed) is reachable from itself and is thus part of an ac-
cepting cycle. If this is the case, the algorithm reports a cycle and exits on[Cine[7} It is
sufficient to find a path back to the stack of the blue DFS [SEO05], hence the cyan color
in Correctness depends on the fact that different invocations of the red
DFS happen in postorder. The algorithm works in linear time: each state is visited at
most twice, since the result of a red DFS can be reused in subsequent red DFSs; states
retain their red color.

7.2.3 Parallel LTL Model Checking Algorithms for Shared-Memory
Architectures

In the field of parallel LTL model checking, the first algorithms designed targeted dis-
tributed memory architectures like clusters of machines. This family of algorithms in-
cludes Map [Bri+04]], Owcry [CP03] and BLeEpGE [BBCO3b; BBCO5b]. It is however
well known that this kind of message passing algorithm can be easily ported to shared-
memory architectures like multi-core computers although the specifics of these archi-
tectures must be considered to achieve good scalability [BBR10b]. Their common char-
acteristic is to rely on some form of breadth-first search (BFS) of the graph that has the
advantage of being easily parallelized, unlike depth-first search (DFS) [Rei85[]. They
hence deliver excellent speedups but sacrifice optimality and the ability to report ac-



cepting cycles on-the-fly. A combination of Owcty and Map (OTF_Owcty [BBR09a])
restores “on-the-flyness”, is linear-time for the class of weak LTL properties, and main-

tains scalability (other algorithms are discussed in [Section 5.3).

swarM verification [HJGOS]| consists of spawning multiple unsynchronized instances
of Nprs each exploring the graph in a random way. Accepting cycles are expected to be
reported faster thanks to randomized parallel search, but in the absence of such cycles
parallelization does not help. This pragmatic strategy however targets graphs that are
too large in any case to be explored in reasonable time. The purpose is then to maximize
the graph coverage in a given time frame and thereby increase confidence in the model.

Two recent multi-core algorithms follow the principle of the SWARM technique
but deviate from it in that working threads executing NprFs are synchronized through
the sharing of some state attributes. In the first one, LNDFs from [Chapter 5 workers
share the outcome of the red (nested) search which can then also be used to prune the
blue search. Since the blue flags are not shared among threads, the red searches are
still invoked in the appropriate DFS postorder. The ENDpFs algorithm [EPY11] also
allows the sharing of blue flags, but a sequential emergency procedure is triggered if
the appropriate invocation order of the red DFS is not respected. Moreover, to maintain
correctness, information on a red DFS in progress cannot be transmitted in “real time”
to other threads: the states visited by a red DFS are only marked globally red after it
has returned.

A thorough experimental comparison of ENprs and LNDFs in led to the
main conclusion that ENDFs and LNDFs complement each other on a variety of models:
the larger amount of information shared by ENDFs can potentially yield a better work
distribution, but LNDFs is to be preferred when ENDFs threads often launch unfruitful
emergency procedures. Since this emergency procedure launches the sequential Nprs
algorithm, large portions of the graph may then be revisited, in the worst case by all
workers. Hence, a combination of ENprs and LNDFs was proposed in to
remedy the downsides of the two algorithms. The principle of that parallel algorithm
(called NMCNDprs) is to run ENDFs but replace its sequential emergency procedure by a
parallel LNDFs. Experiments show that this combination pays off: NMCNDFs is always
at least as fast as ENDFs or LNDFs.

While NMCNbrs combines the strengths of both earlier algorithms in terms of per-
formance, it also conjoins their memory usage. LNDFs requires 2P + log, (P) + 1 bits
per state (2 local colors for all P workers, a synchronization counter and a global red
bit) and ENpFs 4P + 3 (2 local colors plus another 2 for the repair procedure and 3
global bits: {dangerous,red,blue}). Next to more than doubling the memory usage,
the conglomerated algorithm is long and complex.




7.3 A New Combination of Multi-Core NDFS

To mitigate the downsides of NMCNDFs, we present a new algorithm, CNDFs, shown in
Like the previous multi-core algorithms, it is based on the principle of
swarM worker threads which traverse state space in randomized depth-first order. (in-
dicated by subscript p here), sharing information via colors stored in the visited states,
here: blue and red. With NEXT—STATE?, (NEXT—STATE;), we denote the random permu-
tation of successors used in the blue (red) prs by worker p. After randomly visiting

all successors (Cine[I3HLine[T3), a state is marked blue at[Cine[T6| (meaning “globally

visited”’) and causing the (other) blue DFS workers to lose the strict postorder property.

Algorithm 7.2 Cnprs, a new multi-core algorithm for LTL model checking
11: procedure dfsBlue ,(s)

12: s.cyan[p] := true

1: d P

procedure CNDEs(so, P) 13: for all s’ do NEXT—STATEf,(s)

2 dfsBluey (o) || .|| dfsBluep(so) 14: if —s'.cyan|p] A —s'.blue then

3 report no-cycle 15: dfsBlue ()

4: procedure dfsRed ,(s) ' p

5. R, =R,U{s} 16: s.blue := true

6 for all ' do NExT-sTATE (s) 17" if s € 7 then

7 if s'.cyan[p] then 18: Rp:=0

8 report cycle 19: dfs SR_edp (/S ) .,

9 if ' ¢ R, \—s'.red then 2(1) Z::_a;lvss/ deogp NF:s#s =s.red

10: dfsRed ,(s") . ¢ red ‘= trae
23: s.cyan[p) := false

If the state s is accepting, as usual, a red DFS is launched at[Cine[I9]to find a cycle.
At this point, state s is called “the seed”. All states visited by dfsRed,, are collected
in R,. If no cycle is found in the red DFS, we can prove that none exists for the seed
(Proposition 7.1)). Still, because the red DFS was not necessarily called in postorder,
other (non-seed, non-red) accepting states may be encountered for which we know noth-
ing, except the fact that they are out of order and reachable from the seed. These are
handled after completion of the red DFS at|[Line[20] by simply waiting for them to be-
come red.

Our proof shows that in this scenario there is always another worker which can
color such a state red (Proposition 7.3). The intuition behind this is that there has to
be another worker to cause the out-of-order red search in the first place (by coloring
blue) and, in the second place, this worker can continue its execution because cyclic



waiting configurations can only happen for accepting cycles. These accepting cycles
would however be encountered first, causing termination and a cycle report (Line]g).
After completion of the waiting procedure, CNDFs marks all states in R, globally red,
pruning other red DFSs.

The crude waiting strategy requires some justification. After reassessing the ingre-
dients of LNDpFs and ENprFs, we found that ENDFs is most effective at parallelizing the
blue DFS. This is absolutely necessary since the number of blue states (all reachable
states) typically exceeds the number of red states (visited by the red DFS). In ENDFs,
however, sharing the blue color often led to the expensive (memory and performance
wise) sequential repair procedure [EPY11]]. We were unable to construct a correct algo-
rithm that colors both blue and red while backtracking from the respective DFS proce-
dures. Therefore, we now want to investigate whether the intermediate solution, using
a wait statement as a compromise, leaves enough parallelism to maintain scalability.

Cn~DFs only uses P 42 bits per state plus the sizes of R. In the theoretical worst
case (an accepting initial state), each worker p could collect all states in R ,. In our vast
set of experiments (cf. Sec. , however, we found that the set rarely contains more
than one state and never more than thousands, which is still negligible compared to |S].
Our experiments also confirmed that memory usage is close to the expected amount.

Correctness. Proving correctness comprises two parts: proving the consistency of
the algorithm, i.e. CNDFs reports a cycle iff an accepting cycle is reachable from s,
and termination. The former turned out to be easier than for our previous parallel Nprs
algorithms. The wait condition in combination with the late red coloring forces the
accepting states to be processed in postorder. Stated differently: a worker makes the
effects of its dfsRed,, (s) globally visible (via the red coloring), only after all smaller (in
postorder) accepting states ¢ have been processed by some dfsRed (¢). This is expressed
by[Cemma 7.3} In[Theorem 7.1} we finally show that, if the algorithm terminates without
reporting a cycle, all accepting states must be red and consequently cannot lie on a cycle.
Proof of termination was already discussed briefly and is detailed in

In the following proofs, the graph coloring and the process counter of]
are viewed as state properties of the execution. When writing dfsBluep(s) @ we
refer to the point in the execution at which a worker p is about to call dfsRed on a
state s at within the execution of dfsBluep(s). Graph colorings are denoted as
follows: s € Red means that the red flag of s is set to true and similarly s € Blue means
that the blue flag is set. For local flags we use s € Cyan,,. Also, we use the modal
operator s € [IX, to express Vs’ € NEXT-STATE(s) : 5" € X. We show that our propositions
hold in the initial state (Vs € S : s ¢ Red As & Blue \Yp € {1...P} : s ¢ Cyan,) and
inductively that they are maintained by execution of each statement in the algorithm,




considering only lines that can influence the truth value of the proposition. Here an

important assumption is that all lines of are executed atomically.

Lemma 7.1. Red states have red successors: Red C [1Red.

Proof. Initially, there are no red states, hence the lemma holds.

States are colored red when dfsBlue, @22 and are never uncolored red. The set of
states R, that is colored at contains all states reachable from the seed s, but
not yet red, since dfsRed ,(s) performed a DFS from s over all non-red states. For the
red states reachable from s, the induction hypothesis can be applied, hence there are no
non-red states reachable from s that are notin R . O

Lemma 7.2. At[Line[20] the set R, invariably contains (1) the seed s, (2) all non-red
states reachable from s and also (3) all states in the set are reachable from the seed s:
dfsBluep(s):> (sER)AN(Vs'Red:s—="s' =5 €R,)N(Vs" € Rp=s5s—"5")).

Proof. At[Line[5} we have s € R),. For the rest, see proof of O

Lemma 7.3. The only accepting state that can be colored red at|[Line[22)(for the first
time) is the current seed s itself: dfsBlue,(s) @:> (RpNF)\Red C {s}.

Proof. Assume dfsBluep(s)@ and Ja € (F\ {s}) :a € R,,. We show that a € Red.

By[Cemma 7.2} R, contains at least s and the non-red states reachable from s. After
Line 20} all non-seed accepting states in R, are red: (R, N (F \ {s})) C Red. Since,
acR,N(F\{s}), we have: a € Red. O

Proposition 7.1. The initial invocation of dfsRed,(s) at|Line |19 of |Algorithm 7.2| re-
ports a cycle if and only if the seed s belongs to a cycle.

Proof. < is split into two cases: Case =: Every state s’ € Cyan,, can reach the seed
from dfsBlue,,(s) @ by properties of the DFS stack. Similarly, when dfsRed,,(s") @
s” is reachable from the seed s. Therefore, there is a cycle: s” — s —* s —* 5.

Case «: assume dfsRed ,(s) at finishes normally (without cycle report),
while s lies on a cycle C. We show this leads to a contradiction. Since dfsRed avoids
only red states (Line [9), there would have to be some r € C N Red obstructing the
search. The state r can only have been colored red at by a worker. W.lo.g.
we investigate the first worker dfsRed,, to have colored r red. p' started for an s’ € F
(dfsBlue , (s") @Line|19).

Since r is not yet red, by [Lemma 7.1| C N Red = 0. Before r is colored red, it is
first stored in R - ByLemma 7.2|, we also have C C Rp/. Either s’ € C, then the cycle
through 5" would have been detected since s" € Cyan,,. Or else s’ € C, and then we have

{s} € (R, \Red) when dfsBlue , (s') @22] contradicting O




Proposition 7.2. Red states never lie on an accepting cycle.

Proof. Initially, there are no red states, hence the proposition holds.

When dfsBlue p(s) @122} the set of states R, is colored red. The only accepting state
to be colored red is the seed s (Lemma 7.3)). By|Proposition 7.1} this state s does not lie
on an accepting cycle. Hence, is preserved. 0

Lemma 7.4. Blue states have blue or cyan successors: Blue CJ,)(Blue U Cyan,,).

Proof. Initially there are no blue states, hence the lemma holds.

Only at[Cine[T6] states are colored blue, after each successor ¢ has been skipped at
Line|14{(r € Cyan, U Blue), or processed by dfsBlue,, at|Line|15|(leading to ¢ € Blue).
States can be uncolored cyan (Line [23)), but only after they have been colored blue
(Line[16). O

Lemma 7.5. A blue accepting state, that is not also Cyan,, for some worker p, must be
red: Ya € (BlueNF): (Vp € {l...P}:a¢ Cyan,) = a € Red.

Proof. Assume s € (F N Blue) and Vp € {1...P} :s & Cyan,. We show that s € Red.
State s can only be colored blue when dfsBlue ,(s) @16} There, it still retains its cyan
coloring from[Cine[T2] it only loses this color at[Line[23] But, since s € F,[Line[22) was

reached and there a € R, by Hence, s € Red at O

Proposition 7.3. Algorithm I always terminates with a report.

Proof. The individual DFSs cannot proceed indefinitely due to a growing set of red and
blue states. So eventually a cycle or no cycle is reported (Cine[3). However,
progress may also halt due to the wait statement at We now assume towards
a contradiction that a worker p is waiting indefinitely for a state a € F to become red:
dfsBlue,(s) @20} s # a and a € R,. We will show that either a will be colored red
eventually, or a cycle would have been detected, contradicting the assumption that p
keeps waiting.

By a is reachable from s: s = a. And by s € Blue. Induction
on the path s —* a, using[Lemma 7.4} tells us that: either all states are blue (1) or there
is a cyan state on this path (2):

1. a € BlueNVp € {1...P}:a¢ Cyan,: by a € Red, which contra-

dicts the assumption that p is waiting for a to become red. (Note that Ip’ €
{1...P}: a € Cyan,, is handled in Case 2.)

2. deeCyany s —T ¢ —* a, then depending on the identity of worker p’, we have:




A) p=p': but then dfsRed ,(s) would have terminated on cycle detection (C =
s =T ¢ =T ), except when dfsRed ,» did not reach ¢ in presence of a red

state lying on C. However, this would contradict[Proposition 7.2]

B) p # p': we show that either p’ is executing or going to execute dfsRed ; ().

To eventually color state a red, worker p’ must not end up itself in a waiting
state: dfsBluey(a') First, consider the case a’ # a. We also have s —T
¢ —*d (stack Cyanp/). Hence, by alsod' € R,. Therefore, we
can assume w.l.o.g. that @ = d' and only consider dfsBlue,,(a) @ We
can repeat the reasoning process of this proof, with p = p’ and s = a. But
since there are finitely many workers, the chain of processes waiting for
each other eventually terminates, except the hypothetical configuration of a
cyclic waiting dependency, which we consider finally.

To exclude cyclic dependencies, assume n > 2 workers are simultaneously waiting
for each other’s seed to be colored red at[Line20] We have: dfsBlue, (s;)@ROJA --- A
dfsBluen(s,,)@/\ 52 € RiA---As; €R,. This is only possible if s; —T s, A--- A
sp — 1 51, hence there is a cycle: s; =T --- —T 5, =T 5;. However, this contradicts
that the red DFSs (which terminate anyway) would have detected this cycle

For 7). =
Theorem 7.1. reports an accepting cycle if and only if one is reachable
from so.

Proof. By the algorithm is guaranteed to terminate with some report,
forming the basis for two cases: Case =: dfsRed,,(s) @[§| implies a cycle
tion /.1)).

Case <=: At[Line[3} we have so € Blueand Vp € {1,...,P}: Cyan, = 0 by properties
of DFS. Now, by|Lemma 7.4} we have: Vs € G : 5o —* s = s € Blue. Hence, all reachable

accepting states must be red by [Lemma 7.5|and do not lie on cycles by [Proposition 7.2]
O

74 Experimental Evaluation

The experiments in [Chapter 2| [Chapter 6|and [Chapter 5| were performed earlier on 16-
core machines. Meanwhile, in accordance with Moore’s law applied to parallelism,
we obtained access to a 48-core machine (a four-way AMD Opteron™ 6168). The
added parallelism puts extra stress on the scalability of our algorithms and therefore
also forces a repetition of some of our previous experiments. We investigated the cause




for the performance difference between various algorithms: NMCNbrs from[Chapter 6]
CnpFs (the current chapter), Ote_Owcry [BBR09a] and reachability from [Chapter 2]
Work duplication due to overlapping stacks can cause slowdowns for all multi-core Nprs
variants, as can long await cycles in CNprs. We introduced counters to measure and
study these effects. Initially, we focus on models without cycles, the hardest case for
these algorithms. Later, we move on to show that CNDFs exhibits the same on-the-fly
performance as the multi-core NDFs variants of the previous two chapters.

74.1 Experimental Setup

We have used models from the BEeEm database [Pe107]lz| From each type of model,
we selected the variants with more than 9 million states. Our CnDFs algorithm is im-
plemented in the multi-core backend of the LTSMin model checking toolset [LPW11al,
based on a dedicated scalable lock-free hash table. For a fair comparison with previous
algorithms, we also implemented some Nprs optimizations (see[Section 5.4.4), all-red
and early cycle detection. All-red colors a state s red, if all its successors are red af-
ter [Cine [T3)] of [Algorithm 7.2} correctness follows from Early cycle
detection detects certain accepting cycles already in the blue search.

LTSmiN 1.@ was compiled with cce 4.4.2 (with optimization -O2) and ran with:
dve2lts-mc —--threads=N -s28 —--state=table —--strategy=name,
where name can be cndfs or endfs, 1ndfs, representing the different algorithms
(see[Chapter 6). We used DIVINE 2.5.2 [Bar+10] as Otr_Owcty implementation, com-
piled and run with equivalent parameters. Since LTSMIN reuses its next-state function,

both tools are comparable (see [Chapter 2).

74.2 Models without Accepting Cycles

In[Chapter 6 we showed that NMCNDFs was the best scaling LTL model checking algo-
rithm on 16 core machines. Hence, we started comparing plain Cnprs and NMCNDFs.
[Table 7.1|shows the average runtime of both algorithms over five runs on all benchmarks,
for 1, 8, 16 and 48 cores. The performance of CNDFs is on par with that of NMCNDFs,
which is impressive considering the crude waiting strategy of the algorithm.

We confirmed that the time spent at the await statement (Cine[20]in [Algorithm 7.2))
is indeed less than 0.01 sec on runs with 48 cores for all BEem models. This is caused
by the all-red extension, which greatly reduces work in the red DFS. Without all-red,
we observed high waiting times causing speeddowns with more than 8 cores.

71 All results are available atjhttp://fmt.cs.utwente.nl/tools/ltsmin/atva-2012/,
72nttp://fmt.cs.utwente.nl/tools/ltsmin/ next branch, v.1.9 is due Aug. 2012.
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Table 7.1: Runtimes (sec) with NMCNbrs and CNDFs for all models.

NMCNDFs CNDFS
1 8 16 48 1 8 16 48

States

anderson.6.prop2 29E+7| 144.0 46.5 31.323.7 146.6 47.2 31.723.6

anderson.6.prop4 3.6E+7| 1729 54.1 35.827.1| 1729 54.3 36.227.3
bakery.9.prop2 1.1E+8| 378.9 624 355189 3689 64.6 36.919.9
bopdp.4.prop3 24E+7 747 11.1 64 33| 749 110 64 33
elevator.5.prop3 2.1E+8/1,387.0272.7 154.6 67.3/1,390.8 273.3 154.2 71.2
elevator2.3.prop4 1.5E+7| 134.6 25.7 15.5 8.7 1369 255 158 8.7
lamport.7.prop4 TAE+7| 299.2 61.9 355235 297.7 60.8 359229

leader_election.6.prop2|3.6E+7|1,495.2 189.5 194.531.9(1,501.9 190.1 94.532.2
leader_filters.6.prop2 |2.1E+8| 444.2 59.5 30.412.4| 439.0 59.5 31.012.8
leader_filters.7.prop2 [2.6E+7| 73.5 9.7 64 23| 733 94 5.0 23

lup.4.prop2 9.1E+6| 19.6 4.7 29 22 195 47 29 21
mcs.5.prop4 1.2E+8| 538.3147.0 89.958.2| 540.3146.5 90.257.1
peterson.5.prop4 2.6E+8|1,186.0229.4 135.3 84.9|1,146.5 226.2 133.0 83.6
rether.7.prop5 9.5E+6| 43.0 62 38 27 436 63 39 26
synapse.7.prop3 1.5E+7] 373 56 33 20 371 55 33 19

Additionally, we made a comparison of absolute speedups so as to investigate the
properties of the different algorithms (Figure 7.TH7.6). For Cnprs and NMCNDbDFs, we
included the standard deviation of the 5 runs as error bars. As the base case for the
speedup of the LTL algorithms, we used CNDFs: S, = TICNDFS/ T, for reachability
we used its own base case. We included reachability from [Chapter 2| to serve as a
reference point for CNDFs. We were primarily interested in comparing the scalability of
Cn~prs with our parallel reachability implementation. After all, sequential NDFS visits
each state at most twice; once in the blue DFS and possibly once in the red DFS.

We notice that NMCNbDrs and CNDFs are always faster than OTr_OwcTty. The error
bars show less robust, fluctuating runtimes for NMCNprs (e.g. leader_filters).
Upon investigation it turned out that NMCNDFs sometimes launches a repair search
even though we also fitted its ENDFs search with all-red. When only few workers enter
this repair search, it cannot be parallelized. In these cases, CNDFs turns to waiting, a




Table 7.2: Expected and actual speedups for CNDFs according to speedup model.

161 | Bl Rig i |Dhs Ely' S D" Ei” si”
anderson.6.prop2 |3E+7|1E+8 4E+3 30.6| 3.6 8.6 64| 47 66 46
anderson.6.prop4 |4E+7|1E+8 3E+3 31.9| 3.1 10.2 64| 4.0 80 5.0
bakery.9.prop2 1E+8|2E+8 4E+5 28.0| 1.4 20.5 19.2| 1.6 17.2 143
bopdp.4.prop3 2E+7|3E+7 6E+5 26.2| 1.3 20.0 22.8] 1.8 14.6 155
elevator.5.prop3 |2E+8|4E+8 2E+3 39.5| 1.9 21.0 19.5| 3.2 125 9.0
elevator2.3.prop4 |1E+7|3E+7 2E+6 33.2| 2.0 16.3 15.8| 53 63 8.0
lamport.7.prop4 |7E+7|1E+8 6E+4 30.5| 1.7 17.6 13.3| 19 158 104
leader_el.6.prop2 |4E+7|4E+7 4E+4 40.5| 1.0 40.4 46.6| 1.0 403 39.5
leader_filt.6.prop2 | 2E+8|2E+8 7E+5 31.9| 1.0 31.6 34.4| 1.0 30.7 299
leader_filt.7.prop2|3E+7|3E+7 1E+5 27.6| 1.0 27.4 319 1.0 269 278
lup.4.prop2 OE+6|2E+7 4E+3 17.7| 2.5 7.1 9.7| 46 38 63
mcs.5.prop4 1E+8|3E+8 1E+4 34.4| 22 157 95| 2.7 126 173
peterson.5.prop4 (3E+8[4E+8 8E+5 34.1| 1.6 209 139, 19 183 11.0
rether.7.prop5 1E+7|2E+7 1E+5 223 1.9 119 16.5] 24 92 143
synapse.7.prop3 |2E+7|2E+7 1E+2 20.4| 1.1 179 192 12 17.0 18.6

much better strategy, since in total it waits less than 0.01 sec. Also, reachability scales
sometimes twice as good as CNDFs; anderson even scales 5 times better.

We investigated why the speedup of CNDFs differs from reachability. We measured
the total amount of work performed by all workers. In particular, we counted for each
benchmark the state count |G|, and the numbers B, and R,, the total number of blue
and red colorings in a run with n cores. Next, we estimate the duplicate work compared
to reachability as D, := (R, + B,,)/|G|. We view the reachability speedups S7*" as
ideal (under the plausible assumption that maximal speedup is limited mostly by the
memory bandwidth). Hence we can calculate the expected speedup E¢ := Sreach / p&s
for alg € {fsh,cndfs} where fsh is CnpFEs with heuristics (see below).

compares these estimated speedups Esg with the actual speedups Syg.

Note that the estimated speedups for CNDFs Ejg'dfs correspond nicely with the mea-

sured speedups Sigdf ¥ for many benchmarks. Hence, we conclude that the variation in

speedup is mainly caused by the degree of work duplication.
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Figure 7.7: Work duplication per core per model

To combat work duplication, we reuse the “fresh successor heuristics” (Chapter 6).
If possible, this randomly selects a successor that has not yet been visited before. It is
available in the LTSmiIN toolset (-—perm=dynamic). As a consequence, workers tend
to be directed towards different regions of the state space, reducing work duplication.

These results are also shown in [Table 7.2 ngh s Efgl and stg together with the

measured amount of blue and red colorings: B 438 and R’:fél . The heuristic approach shows
quite some improvement, sometimes halving work duplication and doubling speedup
(see elevator). Still we see duplications as high as 3.6 (see anderson). Note that
the earlier benchmarks in already use this heuristic.

We expect that in the near future, the number of cores in many-core systems will
still grow. Will this increase work duplication and put a limit on speedup of CNDFs?
To give an indication, we plotted the increase of work duplication with a growing num-
ber of cores with fresh successor heuristics (Figure 7.7). The increase is sublinear, so
we expect that speedups will be maintained on larger many-core systems with similar
architecture and scaling bandwidth characteristics.

Finally, we note that the size of the input has a small yet significant effect on the
amount of work duplication; models with higher state count have less duplication.

74.3 Models with Accepting Cycles

In[Chapter 6] we experimented thoroughly to investigate the “on-the-flyness” of swarm
Nprs and LNprs. We noticed that the benefits of independent swarMm verification is
limited, on average only yielding a speedup of 2-8 on 16 core machines. LNDFs however
yielded speedups from 4 to 14. Combined with the fresh successor heuristic speedups




often became superlinear. This is not surprising [RKS88|], because we verified that in
those cases there are many cycles, distributed evenly over the state space.

We performed the same experiments again with CNDFs on a 48 core machine. The
results in show that CnDFs exhibits the same desirable on-the-fly behavior
as LNDFs, scaling up to 48 cores. For completeness, we also included the runtimes
and speedups with OTF_OwcrTy in the table. Its heuristic on-the-fly behavior seems
to fail in some cases. It must however be mentioned that the on-the-fly capabilities
of this algorithm have recently been improved by changing its exploration order to be
more DFS-like [Bar+11a]. In [Bar+11al], performance is reported on par with LNDFs.
Unfortunately, we do not have the means (a GPGPU) to reproduce any results here.

Table 7.3: On-the-fly behavior of parallel LTL algorithms

1 core 48 core Otr_OwcTy

Nprs| LNDFs CNDFs 1 core |48 core

kel 3 3 . 5S) kel

S| 5|55l 5| 8| &

model ~ Y| | & 53 wn &~
anderson.8.prop3 | 36.4| 4.0/ 1.2| 4.1| 0.2|2858.8| 1433.2
bakery.7.prop3 32| 04| 02| 03| 02 22 52
bakery.8.prop4 15.7| 0.6] 0.3| 0.6/ 03| 734 14.3

Runtimes (sec) |elevator2.3.prop3 84| 1.4| 02| 14| 0.2| 432.3] 1925
extinction.4.prop2 | 2.2| 0.1 0.1] 0.1| 0.1 1.8 1.7
peterson.6.prop4 29.1| 0.6 0.5] 09| 0.5] 668.4| 705.7
szymanski.5.prop4| 1.7| 14| 0.1| 1.3] 0.2 2.1 3764

anderson.8.prop3 9.1|31.1| 8.8|175.0 2.0
bakery.7.prop3 8.7|18.3|10.9| 21.2 0.4
bakery.8.prop4 28.3(51.1|26.2| 489 5.1
Speedups elevator2.3.prop3 6.0[51.5| 59| 52.1 22
extinction.4.prop2 30.4132.1(18.5] 28.8 1.0
peterson.6.prop4 46.1/59.8|33.0| 62.4 0.9

szymanski.5.prop4 1.2|12.0| 1.3| 109 0.0




74.4 Counterexample Length

Lengthy counterexamples are hard to study even with good model checking tools. There-
fore, finding short counterexamples is quite an important property of model checking
algorithms. Strict BFS algorithms deliver minimal counterexamples, while DFS al-
gorithms can yield very long ones. Once the strict BFES/DFS order is loosened, these
properties can be expected to fade. This is exactly what both OTr_Owcty and CNDFs
do. We studied the length of the counterexamples that these algorithms produce.

For this purpose, 45 models with counterexamples were selected from the BEEM
database, all algorithms run 5 times, and computed the average counterexample length
and standard deviation. The results are summarized in scatter plots with bars represent-
ing the standard deviation. [Figure 7.8| compares randomized sequential NpFs (vertical
axis) against sequential Otr_Owcrty (horizontal axis). compares the results
of Cnprs with fresh successor heuristic (fsh) against OTF_OwcTy on 48 cores.

In the sequential case, most bars are above the equilibrium so, as expected, NDFs
produces longer counterexamples of more variable size compared to OTr_OwcTy (which
we could not randomize). The parallelism of a 48-core run, however, greatly stabilizes
and reduces counterexample lengths for CNDFs, while the randomness added by paral-
lelism introduces variation for OTr_Owcrty (horizontal bars). In most cases, CNDFs’
counterexamples become shorter than those of OTr_OwcTy, a surprising result consid-
ering the latter’s BFS-like order. Anoutlierisplc. 4: All Nprs algorithms consistently
find a counterexample of length 216, while OTr_OwcTy finds one of length 2!
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Figure 7.8: NDFs vs OTF_Owcry (1 core) Figure 7.9: Fsh vs OTF_OwcTy (48 cores)




7.5 Conclusion

We presented CNDFs, a new multi-core NDFs algorithm. It can detect accepting cycles
on-the-fly, and its worst case execution time is linear in the size of the input graph. We
showed that CnDFs is considerably simpler than its predecessor NMCNDFs, because
of the deep integration of ENpFs and LNDFs. Experiments show that CNpFs delivers
performance and scalability similar to its predecessors, but achieves this more robustly.
Hence Cnprs is currently the fastest multi-core LTL model checking algorithm in prac-
tice. Moreover, CNDFs halves the memory requirements per state per worker thread; an
important factor since the total number of cores keeps growing.

Experiments revealed that the main bottleneck for perfect scalability of CNDFs is
currently the work duplication due to overlapping stacks. Forcing workers to favor
“fresh” successor states already decreases duplication. The same experiments indicate
that work duplication grows only linearly in the number of cores, and decreases for
larger input sizes. From this we conjecture that Cnprs will scale even beyond 48 cores.

CnpFs shares global information only during or even after backtracking, which leads
to potential work duplication. In the worst case, every worker could visit the whole
graph, blocking any speedup. During our extensive experiments with the entire BEEM
database we have not found such cases. However, we did observe work duplication of
factor 3 on 48 cores, so there is room for improvement.

Designing a provably scalable, linear-time algorithm remains an open question.
Such an algorithm should cause negligible duplicate work and avoid synchronization
by await statements. So far, we have not been able to come up with a correct algorithm
without await statements or a repair procedure. An improvement might be to invent a
smart work stealing scheme, in which workers can cooperate instead of waiting.

Finally, we demonstrated that counterexamples in CNDFs become shorter with more
parallelism, even shorter than counterexamples in parallel BFS-based Otr_OwcTy. This
is an interesting and desirable property for a model checking algorithm. It is intriguing
that our parallel DFS based algorithm shows good scalability and short counterexam-
ples, usually attributed to BFS algorithms, while still maintaining the linear-time and
on-the-fly properties expected from a DFS algorithm.



Improved On-The-Fly Livelock Detection

Alfons Laarman, David Faragd

Abstract

Until recently, the preferred method of livelock detection was via LTL model
checking, which imposes complex constraints on partial-order reduction (por), lim-
iting its performance and parallelization. The introduction of the DFsgo algorithm
by Faragé et al. showed that livelocks can theoretically be detected faster, simpler,
and with stronger pPor.

For the first time, we implement DFsg, and compare it to the LTL approach
by experiments on four established case studies. They show the improvements over
the LTL approach: DFsgro is up to 3.2 times faster, and it makes Por up to 5 times
better than with SPIN’s NDFs.

Additionally, we propose a parallel version of DFSgr, Which demonstrates the
efficient combination of parallelization and por. We prove parallel DFSgro COI-
rect and show why it provides stronger guarantees on parallel scalability and por
compared to LTL-based methods. Experimentally, we establish almost ideal linear
parallel scalability and por close to the por for safety checks: easily an order of
magnitude better than for LTL.

About this chapter: The current chapter is based on the paper “/mproved on-the-Fly
Livelock Detection”, which was published at NFM 2013 |LF13].

8.1 Introduction

Context. In the automata-theoretic approach to model checking [VW86], the be-
havior of a system-under-verification is modeled, along with a property that it is ex-



pected to adhere to, in some concise specification language. This model M is then
unfolded to yield a state-space automaton Ay, (cf. Definition 8.1). All safety prop-
erties, e.g. deadlocks and invariants, can be checked directly on the states in A4 as
they represent all configurations of M. This check can be done during the unfolding,
on-the-fly, saving resources when a property violation is detected early on.

For more complicated properties, like liveness properties [BKOS||, A is inter-
preted as an @-automaton whose language £(.A ) represents all infinite executions
of the system. A property @, expressed in linear temporal logic (LTL), is likewise
translated to a Biichi or w-automaton A-, representing all undesired infinite execu-
tions. The intersected language £(Ax() N L(A-y) now consists of all counterexample
traces, and is empty if and only if the system is correct with respect to the property. The
emptiness check is reduced to the graph problem of finding cycles with designated ac-
cepting states in the cross product Ay @ A-¢ (cf.[Section 8.2). The nested depth-first
search (NDFs) algorithm [[Cou+92] solves it in time linear to the size of the product and
on-the-fly as well.

Motivation. The model checking approach is limited by the so-called state-space
explosion problem [BKOS]|, which states that A ¢ is exponential in the components of
the system, and A, exponential in the size of ¢. Luckily, several remedies exist to this
problem: patience, specialization and state-space reduction techniques.

State-space reduction via partial-order reduction (por) prunes Axq by avoiding
irrelevant interleavings of local components in M [KP88bf, |Val91b]: only a sufficient
subset of successors, the ample set, is considered in each state (cf. [Section 8.2). For
safety properties, the ample set can be computed locally on each state. For liveness
properties, however, an additional condition, the cycle proviso, is needed to avoid the
so-called ignoring problem [EP10]. por can yield exponential reductions.

Patience also pays off exponentially as Moore’s law stipulates that the number of
transistors available in CPUs and memory doubles every 18 months [Moo65]. Due to
this effect, model checking capabilities have increased from handling a few thousand
states to covering billions of states recently (the current chapter and [BL13al]). While
this trend happily continues to increase memory sizes, it recently stopped benefitting the
sequential performance of CPUs because physical limitations were reached. Instead, the
available parallelism on the chips is rapidly increasing. So, for runtime to benefit from
Moore’s law, we must parallelize our algorithms.

Specialization towards certain subclasses of liveness properties, finally, can also
help to solve them more efficiently. For instance, a limitation to the CTL and the weak
LTL fragments was shown to be efficiently parallelizable [SZB12; [BBR09a]. In the
current chapter, we limit the discourse to livelock properties, an important subclass



(used in about half of the case studies of [Lluﬂ and a third of [Pel07])) that investigates
starvation, occurring if an infinite run does not make progress infinitely often. The
definition of progress is up to the system designer and could for instance refer to an
increase of a counter or access to a shared resource. The spin model checker allows the
user to specify progress statements inside the specification of the model [Holl 1]], which
are then represented in the model by the state label ‘progress’ and referenced by the
predefined progress LTL property [HPY96]. Until 1996, spin used a specific livelock
verification algorithm based on the original divergence detection algorithm proposed by
Valmari [[Val93| from 1993. Section 6 of [HPY96] states that it was replaced by LTL
model checking due to its incompatibility with por.

Problem. Parallelization of LTL model checking is hard. The current state-of-the-
art reveals that parallel cycle detection algorithms either raise the worst-case complexity
to L2 [BBR09a| or to L - P [Eva+12], where L is the size of the LTL cross product and
P the number of processors. Moreover, its additional constraints on por severely limit
its reduction capabilities, even if implemented with great care (see models allocation,
cs and p2p in Table 1 in the appendix of [EP10]). Last but not least, these constraints
also limit the parallelization of por [BBR10a].

We want to investigate whether better results can be obtained for livelocks, for which
recently an efficient algorithm was proposed by Faragé et al. [FS09]: DFSgro. In theory,
it has additional advantages over the LTL approach:

1. It uses the progress labels in the model directly without the definition of an LTL
property; avoiding the calculation of a larger cross product.

2. Itrequires only one pass over the state space, while the NDFs algorithm, typically
used for liveness properties, requires two.

3. It eliminates the need for the expensive cycle proviso with por.

4. It finds the shortest counterexample with respect to progress.

But DFsgro iS yet to be implemented and evaluated experimentally, so its practical per-
formance is unknown. Additionally, a few hypotheses stand unproven:

1. The algorithm’s strategy to delay progress as much as possible, may also be a
good heuristic for finding livelocks early, making it more on-the-fly.

2. Its por performance might be close to that of safety checks, because the cycle
proviso is no longer required [FS09]], and the visibility proviso (see[Table 8.1)) is
also positively influenced by the postponing of progress.

8.1 proMELA database: http://www.albertolluch.com/research/promelamodels|



http://www.albertolluch.com/research/promelamodels

3. The use of progress transitions instead of progress states is possible, semantically
more accurate, and can yield better partial-order reductions.

Furthermore, no parallelization exists for the DFSgro algorithm.

Contributions. We implemented the DFsyyo algorithm in the LTSmin [BPW10;
LPW11a; BL13al, with both progress states and transitions. For the latter, we extended
theory, algorithms, proofs, models and implementation. We compare the runtime and
poR performance to that of LTL approaches using NDFs. For DFsgro, We also investigate
the effect of using progress transitions instead of states on Por.

Additionally, we present a parallel livelock algorithm based on DFsggo, together with
a proof of correctness. While the algorithm builds on previous efficient parallelizations
of the NDFs algorithm [Eva+12;|[Laa+11;LP11]], we show that it has stronger guarantees
for parallel scalability due to the nature of the underlying DFSgpo algorithm. At the
same time, it retains all the benefits of the original DFsg, algorithm. This entails the
redundancy of the cycle proviso, hence allowing for parallel por with almost the same
reductions as for safety checks.

Our experiments confirm the theoretical expectations: using DFsyo on four case
studies, we observed up to 3.2 times faster runtimes than with the use of an LTL property
and the NDFs algorithm, even compared to measurements with the spin model checker.
But we also confirm all hypotheses of Farag6 et al.: the algorithm is more on-the-fly,
and por performance is closer to that of safety checks than the LTL approach, making
it up to 5 times more effective than por in spiN. Our parallel version of the algorithm
can work with por and features the expected linear scalability. Its combination with
POR easily outperforms other parallel approaches [BBR10al.

Overview. In we recapitulate the intricacies of livelock detection via
LTL and via non-progress detection, as well as por. In we introduce
DFSpro fOr progress transitions with greater detail and formality than in [FSO9|], as
well as its combination with por. Thereafter, in we provide a parallel
version of DFSy;, With a proof of correctness, implementation considerations, and an
analysis on its scalability. presents the experimental evaluation, compar-
ing DFSgro 'S (POR) performance and scalability against the (parallel) LTL algorithms in
spiN [Hol12; [HPY96|], DiVINE [BBR10a; BBR09a|, and LTSmin [BL13a; [LPW11al.
We conclude in[Section 8.6



8.2 Preliminaries

8.2.1 Model Checking of Safety Properties

Explicit-state model checking algorithms construct A4 on-the-fly starting from the
initial state sg, and recursively applying the next-state function NEXT-STATE() to discover
all reachable states R o4. This only requires storing states (no transitions). As soon as
a counterexample is discovered, the exploration can terminate early, saving resources.
To reason about these algorithms, it is however easier to consider A4 structurally as a
graph.

Definition 8.1 (State-Space Automaton). An automaton is a quintuple
Anm = (Sm, 50,2, Tam, L), with Sy a finite set of states, so € Sy an initial state, £ a
finite set of action labels, Trg: Sy X L — Spaq the transition relation, and L: Syq —
24P g state labeling function, over a set of atomic propositions AP.

We also use the recursive application of the transition relation T: s & *s' iff w is
a path in Ay from s to s', or s ™ *s' if possibly s = s'. We treat a path Tt dually as a
sequence of states and a sequence of actions, depending on the context. We omit the
subscript M whenever it is clear from the context.

Now, we can define: the reachable states R aq = {s € Saq | so —* s}, the function
NEXT-STATE(): Spq — 2%, such that NEXT-STATE(s) = {@ € £ | 35’ € Sy : (s,0,5') €
Tam} and a(s) as the unique next-state for s, o if & € NEXT-STATE(s), i.e. the state
t with (s,o,t) € Taq. Note that a state s € S comprises the variable valuations and
process counters in M. Hence, we can use any proposition over these values as an
atomic proposition representing a state label. For example, we may write progress =
Peterson0 = CS to have progress € L(s) iff s represents a state where process instance
0 of Peterson is in its critical section CS. Or we can write error = N > 1 to express the
mutual exclusion property, with N the number of processes in CS. These state labels can
then be used to check safety properties using reachability, e.g., an invariant ‘—error’ to
check mutual exclusion in M.

8.2.2 LTL Model Checking

For an LTL property, the property ¢ is transformed to an ®-automaton A-, as detailed
in [VW86]. Structurally, the @-automaton extends a normal automaton (Definition 8.1)
with dedicated accepting states (see[Definition 8.2)). Semantically, these accepting states
mark those cycles that are part of the @-regular language £(A-) as defined in
ftion 8.3




To check correctness of M with respect to a property ¢, the cross product of A,
with the state-space automaton A, is calculated: Ap(xp = Ar ® A-gp. The states
of Spqxe are formed by tuples (s,s") with s € Sy and §' € S-p, with (s,s) € F iff
s’ € Fp. Hence, the number of possible states [Spqxq| equals |[Saq| - |S-g|, whereas
the number of reachable states |R /vl><¢| may be smaller. The transitions in TMX(,, are
formed by synchronizing the transition labels of .A-, with the state labels in .4 1. For
an exact definition of T ¢, we refer to [BKOS].

Definition 8.2 (Accepting states). The set of accepting states F corresponds to those
states with a label accept € AP: F = {s € S | accept € L(s)}.

Definition 8.3 (Accepting run). A lasso-formed path sy s *s s Ts in A, withs € F,
constitutes an accepting run, part of the language of A: vww® € L(A).

As explained in the whole procedure of finding counterexamples to ¢
for M is now reduced to the graph problem of finding accepting runs in A (x¢. This
can be solved by the nested depth-first search (NDFs) algorithm, which does at most
two explorations of all states R r(x . Since A x ¢ can be constructed on-the-fly, NDFs
saves resources when a counterexample is found early on.

8.2.3 Livelock Detection

Livelocks form a specific, but important subset of the liveness properties and can be
expressed as the progress LTL property: L0progress, which states that on each infinite
run, progress needs to be encountered infinitely often. As the LTL approach synchro-

nizes the state labels of A (see[Definition 8.3)), it requires that progress is defined on

states as in

Definition 8.4 (Progress states). The set of progress states ST corresponds to those
states with a state label progress € AP: S¥ = {s € S | progress € L(s)}.

Definition 8.5 (Non-progress cycle). A reachable cycle & in Aq is a non-progress
cycle (NPcycle) iff it contains no progress P.
We define N'P as a set of states: NP ={s€ Sy |In:s K TsAnnNP =0}

Theorem 8.1. Under P =S¥, Apq contains a NPcycle iff the cross product with the
progress property Ayx0oprogress contains an accepting cycle.

Livelocks can however also be detected directly on .4, if we consider for a mo-
ment that a counterexample to a livelock is formed by an infinite run that lacks progress

P, with P = S7. By proving absence of such non-progress cycles (Definition 8.5)),



we do essentially the same as via the progress LTL property, as shows
(see [HPY96] for the proof and details). This insight led to the proposal of dedi-

cates algorithms in [HPY96; FS09] (cf. DFspypo in , requiring |R a¢| time
units to prove livelock freedom. The automaton .A-oprogress consists of exactly two
states [HPY96], hence [Raq|-2 < |Raqxe| This, combined with the revisits of the
NDFs algorithm, makes the LTL approach up to 4 times as costly as DFSgro.

8.2.4 Partial-Order Reduction

To achieve the reduction as discussed in the introduction, por replaces the NEXT-STATE()
with an ample function, which computes a sufficient subset of NExT-sTATE() to explore
only relevant interleavings w.r.t the property [KP88b].

For deadlock detection, ample only needs to fulfill the emptiness proviso and depen-
dency proviso (Table 8.1). The provisos can be deduced locally from s, NEXT-STATE(s),
and dependency relations D C ¥ 5 X X x4 that can be statically overestimated from M,
e.g. (a,B) € D if o writes to those variables that 3 uses as guard [Pat11]. For a precise
definition of D consult [KP88b;|Val91b].

In general, the model checking of an LTL property (or invariant) ¢ requires two ad-
ditional provisos to hold: the visibility proviso ensures that traces included in A, are
not pruned from A x4, the cycle proviso prevents the so-called ignoring problem [EP10]).
The strong variant C3 (stronger than A4 in [BKOS8| Sec. 8.2.2]) is already hard to en-
force, so often an even stronger condition, e.g. C3’, is implemented. While visibil-
ity can still be checked locally, the cycle proviso is a global property, that compli-
cates parallelization [BBR10a]. Moreover, the NDFs algorithm revisits states, which
might cause different ample sets for the same states, because the procedure is non-
deterministic [HPY96]. To avoid any resulting redundant explorations, additional book-
keeping is needed to ensure a deterministic ample set.

Table 8.1: por provisos for the LTL model checking of M with a property ¢

CO0 |emptiness ample(s) = 0 < NEXT-STATE(s) = 0

C1 |dependency |No action o & ample(s) that is dependent on another B € ample(s), i.e.
(a,B) € D, can be executed in the original A ¢ after reaching the state s
and before some action in ample(s) is executed.

C2 |visibility ample(s) # NEXT-STATE(s) == Va € ample(s) : « is invisible, which
means that & does not change a state label referred to by ¢.

C3 |cycle For a cycle w in A, Is € T: NEXT-STATE(s) = ample(s).

C3’ (cycle (impl.) |ample(s) # NEXT-STATE(s) = Aa € ample(s) s.t. &(s) is on the DFs stack.




8.3 Progress Transitions and dfsg;, for Non-Progress

In the current section, we refine the definition of progress to include transitions. We
then present a new version of DFSyro, an efficient algorithm for non-progress detec-
tion by Faragé et al. [FSOY]], which supports this broader definition. We also discuss
implementation considerations and the combination with por.

Progress transitions. As argued in [FS09|, progress is more naturally
defined on transitions than on states. After all, the action °
itself, e.g. the increase of a counter in M, constitutes the actual progress. a T )
This becomes clear considering the difference in semantics between progress @
transitions and progress states for livelock detection: The figure on the right T
shows an automaton with S¥ = {s;} and 77 = {(s2, @,s1)}. Thus the cycle e
57 ¢+ 53 exhibits only fake progress when progress states are used (P = ST):
the action performing the progress, o, is never taken. With progress transitions (P =
T7P), only s, <+ s3 can be detected as NPcycle. While fake progress cycles could be
hidden by enforcing strong (A-)fairness [BKOS||, spin’s weak (A-)fairness [Holll] is
insufficient [FS09|]. But enforcing any kind of fairness is costly [BKOS|.

Definition 8.6 (Progress transitions/actions). We define progress transitions as: T =
{(s,0,5') € T | ¢ € X7}, with ¥ C X a set of progress actions.

Theorem 8.2. pFsy,;, ensures: RNNP # 0 < dfs-fifo(sy) = report NPcycle

Algorithm 8.1 DFsy, for progress transitions and progress states

12: procedure DFs(s)

1: procedure dfs-fifo(so) 13: §:=SU{s}
2: F:={so} » Frontle.:r.queue 14 for all 7 := o(s) s.t. @ € NEXT-STATE(s) do
3 v._:(o > Visited set 5. ifteSAa,t ¢ P then
‘51- §:= (bt >Stack ¢ report NPcycle
: repea 17: if 7 ¢ V then
6: s:=somes € F 18: if 0.t ¢ P th
7 if s €V then ) ot ¢ o
19: DFs(7)
8 DFs(s) :
. 20: else if 1 ¢ F then
9: F~=F\{S} 21 F :=FU{t}
10: until F =0 ) Vv
11: report progress ensured 22 =VUls)

23: S:=8\{s}




DFSgpo.  JAlgorithm 8.1|shows an adaptation of DFsg that supports the definition

of progress on both states and transitions (actions), so P = S” UZP. Intuitively, the
algorithm works by delaying progress as long as possible using a BFs and searching for
NPcycles in between progress using a prs. The correctness of this adapted algorithm
follows from [Theorem 8.2} which is implied by with P = 1.

The FIFO queue F holds progress states, or immediate successors of progress tran-
sitions (which we will collectively refer to as after-progress states), with the exception
of the initial state sg. The outer dfs-fifo loop handles all after-progress states in breadth-
first order (similar to ‘Frontier’ in [LTO04])). The prs procedure, starting from a state in F'
then explores states up to progress, storing visited states in the set V (Cine[22), and after-
progress states in F (Cine[2T). The stack of this search is maintained in a set S
and to detect cycles at[Cine[I6] All states ¢ € S and their connecting transi-
tions are non-progress by except for possibly the starting state from F. The
cycle-closing transition s % ¢ might also be a progress transition. Therefore,
performs an additional check o, ¢ P. Furthermore, an after-progress state s & S
added to F, might be reached later via a non-progress path and added to V. Hence, we

discard visited states in dfs-fifo at

Implementation. An efficient implementation of stores F and V in
one hash table (using a bit to distinguish the two) for fast inclusion checks, while F
is also maintained as a queue F9. S can be stored in a separate hash table as |S| <
|R|. Counterexamples can be reconstructed if for each state a pointer to one of its
predecessors is stored [LPW10a]]. Faragé et al. showed two alternatives [FS09]], which
are also compatible with lossy hashing [BHR13].

Combination with por. While the four-fold performance increase of DFEs, com-
pared to LTL is a modest gain, the algorithm provides even more poten-
tial as it relaxes conditions on por, which, after all, might yield exponential gains. In
contrast to the LTL method using NDFs, DFSg;r, does not revisit states, simplifying the
ample implementation. Moreover, shows that DFSgs, does not require the

cycle proviso using a visibility proviso from[Table 8.2
Lemma 8.1. Under P = S7, C2° implies C3. Under P = X7, C27 implies C3.

Table 8.2: por visibility provisos for DFSggo
C2% |ample(s) # NEXT-STATE(s) = s ¢ S”
C27 |ample(s) # NEXT-STATE(s) == VYo € ample(s) : o ¢ X7




Proof. If DFsg;po With POR traverses a cycle C which makes progress, i.e. ds € C: s €
SP v ample(s)NCNEP £ 0, C25/ C27 guarantees full expansion of s, thus fulfilling
C3. If DEsyyo traverses a NPcycle, it terminates at|[Cine[T6] O

Theorem 8.3. [Theorem 8.2|still holds for pFs;,., with C0, C1, C25/C27 (Theorem 2
from [|[FS09)]).

Proof. shows that if the C0, C1 and C25/ C27 hold, so does C3. Fur-
thermore, C0, C1 and C25/ C27 are independent of the path leading to s, so ample(s)
with DFsg, retains stutter equivalence related to progress [HP94, p.6]. Therefore, the
reduced state space has a NPcycle iff the original has one. O

8.4 A Parallel Livelock Algorithm based on dfsg;,

[Algorithm 8.2|presents a parallel version of DEsgro. The algorithm does not differ much
from the prs procedure remains largely the same, and only dfs-fifo is

split into parallel fifo procedures handling states from the FIFO queue F concurrently.
The technique to parallelize the prs(s,i) calls is based on successful multi-core NDFs
algorithms presented in[PartIII} Each worker thread i € 1..P uses a local stack S;, while
V and F are shared (below, we show how an efficient implementation can partially
localize F). The stacks may overlap (see [Cine 2] and [Cine [9), but eventually diverge
because we use a randomized next-state function: NEXT-sTATE; () (see [Line[T3).

Algorithm 8.2 Parallel bFSgro (PDFSgro)

1: procedure dfs-fifo(sg, P) 13: procedure DFs(s, i)
2: F:={so} > Frontier queue 14: S; =S, U{s}
3: V=0 > Visited set 15: for all 7 := o(s) s.t. & € NEXT-STATE; () do
4 S;:=0forallic1..P > Stacks 16: if 1 € S;Aa,t ¢ P then
50 fifo(l) || ... || fifo(P) 17: report NPcycle
6: report progress ensured 18: if ¢V then
7. procedure fifo(i) 19: if a,r ¢ P then
8 while F # 0 do 20: DFS(1, 1)
9: s:=somes € F 21: else if 1 ¢ F then
10: if s ¢ V then 22: F:=FU{t}
11: DFS(s, i) 23 V:i=VU{s}

12: F :=F\{s} 24: Si =8\ {s}




Proof of correctness. proves correctness of [Algorithm 8.2| We show
that the propositions below hold after initialization of |Algorithm 8.2} and inductively
that they are maintained by execution of each statement in the algorithm, considering
only the lines that influence the proposition. Rather than restricting progress to either
transitions or states, we prove the algorithm correct under P = S P UTP. Hence, the

dual interpretation of paths (see is used now and then. Note that a call
to report terminates the algorithm and the callee does not return.

Lemma 8.2. Upon return of prs(s,i), s is visited: s € V.

Proof. of prs(s,i) adds sto V. O

Lemma 8.3. Invariantly, all direct successors of a visited state v are visited or in F:
Vv € V, o0 € NEXT-sTATE(V) : 0t(v) € VUF.

Proof. After initialization, the invariant holds trivially, as V is empty. V is only modi-
fied at where s is added after all its immediate successors ¢ are considered at
If t € VUF, we are done. Otherwise, DFs(s,i) terminates at or ¢

is added to V at[Line[20] (Cemma 8.2)) or to F at[Cine[22] States are removed from F at
but only after being added to V at|[Line[TT| (Cemma 8.2). O

Corollary 8.1. [Lemma 8.3|holds also for a state v &V in pFs(v, i) just before

Lemma 8.4. Invariantly, all paths from a visited state v to a state f € F\'V contain
progress: Va,veV . fe F\V:v % f — PN #£0.

Proof. After initialization of the sets V and F, the lemma is trivially true. These sets

are modified at[Cine[12] [Cine22] and [Cine 23] (omitting the trivial case):

Let i be the first worker thread to add a state ¢ to F in pFs(s, i) at If
some other worker j adds 7 to V, the invariant holds trivially, so we considert ¢ V.
By all paths v —* s — ¢ contain progress. By contradiction, we show
that all other paths that do not contain s also contain progress: Assume that there
isav €V such thatv & "¢ and PN 7 = (. By induction on the length of the path
m and[Cemma 8.3] we obtain either 7 € V, a contradiction, 7 € F\ V, contradicting
the assumption that worker i is first, or another f # ¢ with f € F \ V, for which
the induction hypothesis holds.

[CineP3] Assume towards a contradiction that i is the first worker thread to add a state s to
V at[Line[23|of pFs(s,i). So, we have s ¢ V before[Line[23] By|[Corollary 8.1] for
all immediate successors 7 of s, i.e. for all # = a(s) such that & € NEXT-STATE(s),
we have r € V orr € F\ V. In the first case, since s # ¢, the induction hypothesis
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holds for ¢. In the second case, if # = s, the invariant trivially holds after[Cine[23]
and if t # s, we have «,t € P, since otherwise ¢ € V by [Line[19] and [Line 20]
(Lemma 8.2)). Thus the invariant holds for all paths s —" f.

O

Remark 8.1. Note that a state s € F might at any time be also added toV by some other
worker thread in two cases: (1) s ¢ ST, i.e. it was reached via a progress transition
(see[Line[I9), but is reachable via some other non-progress path, or (2) another worker
thread j takes s from F at and completes prs(s, j).

Lemma 8.5. Invariantly, visited states do not lie on NPcycles: VNP = 0.

Proof. Initially, V = 0 and the lemma holds trivially. Let i be the first worker thread

to add s to V in pFs(s, i) at So we have s € V just after of pFs(s, ).
Assume towards a contradiction that s € N"P. Then there is a NPcycle s — t — s with

s # t since otherwise would have reported a NPcycle. Now by [Cemma 8.3]
t € VUF. By the induction hypothesis, t ¢ V, sot € F\V. |Lemma 8.4E| contradicts
s — t making no progress. O

Lemma 8.6. Upon return of dfs-fifo, all reachable states are visited: R C V.

Proof. After dfs-fifo(so,P), F = 0 by [Line [8] By [Line [2} [Line [l 1| and [Lemma 8.2}
so € V. Soby[Cemma 83 R C V. O

Lemma 8.7. dfs-fifo terminates and reports an NPcycle or progress ensured.

Proof. Upon return of a call prs(s, i) for some s € F at|Line|l 1} s has been added to V
(Cemma 8.2)), removed from F at[Line[I2] and will never be added to F again. Hence
the set V' grows monotonically, but is bounded, and eventually F = . Thus eventually
all prs calls terminate, and dfs-fifo(so, P) terminates too. O

Lemma 8.8. Invariantly, the states in S; form a path without progress except for the
first state: S; =0 or S; = TN S for some s & *s' and tNP C {51}

Proof. By induction over the recursive pFs(s, i) calls, we obtain . At[Line[20] we have
a,t ¢ P, but at we may have s € S¥ (by[Line[19/and [Line [22)). O

Theorem 8.4. PDFs;,, ensures: ROANP # 0 < dfs-fifo(so, P) = report NPcycle

Proof. We split the equivalence into two cases:
<: Wehaveacycle: s %t % ss.t. ({a}Um)NP =0 by|Line|l6/and[Lemma 8.8
= Assume that dfs-fifo(so,P) # NPcycle AR NNP # 0. However, at [Line [6
R C V by[Lemma 8.6 and [Lemma 8.7] hence RN NP = 0 by [Lemma 8.3} O

204



Implementation. For a scaling implementation, the hash table storing F and V (see
is maintained in shared memory using a lockless design (see[PartTI). Stor-
ing also the queue F'¢ in shared memory, however, would seriously impede scalability
due to contention (recall that F is maintained as both hash table and queue F?). Our
more efficient implementation splits F¢ into P local queues F;, such that F C e p F!
(Remark 8.T|explains the ).

To implement load balancing, one could relax the constraint at [Cine[21|to s & F¥,
so that after-progress states end up on multiple local queues. Provided that A, is
connected enough, which it usually is in model checking, this would provide good work
distribution already. On the other hand, the total size of all queues F;! would grow
proportional to P, wasting a lot of memory on many cores. Therefore, we instead opted

to add explicit load balancing via work stealing. illustrates this. Iff the
local queue Fiq is empty, the steal function grabs states from another random queue F?

and adds them to F//, returning false iff it detects termination. Inspection of
and[Cemma 8.7]shows that removing s from F is not necessary.
The proofs show that correctness of PDFsg, does not require F to be in strict FIFO

order (as does not enforce any order). To optimize for scalability, we enforce
a strict BFs order via synchronization@ between the BFs levels only optionallyﬂ As
trade-off, counterexamples are no longer guaranteed to be the shortest with respect to

progress, and the size of F' may increase (see [Remark 8.T)).

Algorithm 8.3 An implementation of PDFsg, With local queues and load balancing

1: procedure fifo(i)

2 Fiq = {so}

3 while steal(F!) do
4: F:=F1\{s}
5 if s ZV then

6 DFs(s,1)

Analysis of scalability. Experiments with multi-core NDFs (see demon-
strated that these parallelization techniques make the state-of-the-art for LTL model
checking. Because of the BFs nature of DFsyro, We can expect even better speedups.
Moreover, in[Chapter 3] additional synchronization was needed to prevent workers from
early backtracking; a situation in which two workers exclude a third from part of the
state space. [Figure 8.1]illustrates this: Worker 1 can visit s, v, ¢ and u, and then halt.

82 Parallel BFs algorithms, with and without synchronization, are described in|Chapter 9
8-3 The command line option --strict turns on strict PDFSpo in LTSMIN.




Worker 2 can visit s, u, t and v and backtrack over v. If now Worker 1 resumes and
backtracks over u, both v and u are in V. A third worker will be excluded from visiting
t, which might lead to a large part of the state space. shows that this is im-
possible for PDFsy;, as the successors of visited states are either visited or in F (treated
in efficient parallel BFs), but never do successors lie solely on the stack S; (as in cNDFs).

()
cHe

Figure 8.1: Example for early backtracking

8.5 Experimental Evaluation

In the current section, we benchmark the performance of DFsg;o, and its combination
with PoRr, using both progress states and progress transitions. We compare the results
against the LTL approach with progress property using, inter alia, spin [Holl1]. We
also investigate the scalability of PDFSg o, and compare the results against the multi-core
NDFs algorithm cNDFs, the state-of-the-art for parallel LTL [BL13a] (see also[Chapter 7|
and [Chapter TT)), and the Piggyback algorithm in spin (PB). Finally, we investigate the
combination of PDFSg o and POR, and compare the results with owcTy [BBR09a], which
uses a topological sort to implement parallel LTL and por [BBR10al]. Since currently
there is no way to combine por with e.g. cNpFs from[Chapter 7] we cannot experiment
with this aspect on an Mc-NDFs algorithm.

We implemented PDFSgro with work stealing and both stricB/non-
strict BF'S order) in LTSmiN [LPW11a; BPW10] 2.0@ LTSmiN has a frontend for
PROMELA, called SpinS [Hol11]], and one for the DVE language, allowing fair compar-
ison [BPW10; [LPW11a; [BL13a] against spiN 6.2.3 and D1VINE 2.5.2 [BBR09a]. To
ensure similar state counts, we turned off control-flow optimizations in SPINS/sPIN, be-
cause spIN has a more powerful optimizer, which can be, but is not yet implemented
in SpINS. Only the GIOP model (described below) still yields a larger state count in
SPINS/LTSMIN than in spiN. We still include it as it nicely features the benefits of
DFSpro OVEl NDFS.

We benchmarked on a 48-core machine (a four-way AMD Opteron 6168) with
128GB of main memory, and considered 4 publicly availabld® promELA models with

84 LTSmIN is open source, available at: http: //fmt .cs.utwente.nl/tools/ltsmin,
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progress labels, and adapted SpinS to interpret the labels as either progress states,
as in SPIN, or progress transitions. [leader; is the efficient leader election protocol
Ayiming [Far07]. The Group Address Registration Protocol (GARP) is a datalink-level
multicast protocol for a bridged LAN. General Inter-Orb Protocol (GIOP) models ser-
vice oriented architectures. The model i-Protocol represents the GNU implementation of
this protocol. We use a different leader election protocol (leaderpgg) from [DKRS82] in
DVE format [[Pel07] for comparison against D1VINE. For all these models, the livelock
property holds under P = S* and P = TP

8.5.1 Performance

In theory, DFsg, can be up to four times as fast as using the progress LTL formula and
~NDFs. To verify this, we compare DFSgro to NDFs in LTSMIN and spin. In LTSMIN, we
used the command line: prom2lts-mc --state=tree -s28 --strategy=[dfsfifo/ndfs] [model],
which replaces the shared table (for F and V') by a tree table for state compression (see
[Chapter 3). In spiN, we used compression as well (collapse [Holl1])): cc -02 -DNP -
DNOFAIR -DNOREDUCE -DNOBOUNDCHECK -DCOLLAPSE -0 pan pan.c, and pan -m100000
-1 -w28, avoiding table resizes and overhead. In both tools, we also ran prs reachabil-
ity with similar commands. We write oom for runs that overflow the main memory.
shows the results: As expected, | Ry | is 1.5 to 2 times larger than |R]|
for both spiN and LTSmiN; GIOP fits in memory for DFsgy, but the LTL cross product
overflows (NDFs). Typrs is about 1.5 to 4 times larger than T, for spPiN, 2 to 5 times

larger for LTSMIN (cf. [Section 8.2). Ty, is 1.5 to 2 times larger than Ty, likely
caused by its set inclusion tests on S and F. Typgs is 1.6 to 3.2 times larger than T;,

FSkiro *

Table 8.3: Runtimes (sec) of (sequential) DFS, DFSyro, NDFS in sPIN and LTSmIN

LTSmiN SPIN
‘ R‘ ‘ RLTL ‘ TDFS TDFSFIFO TNDFS |R| |RLTL | TDFS TNDFS

leader; | 4.5¢7 198% 153.7 233.2 753.6 |4.5¢7 198%  304.0 1,390.0
garp 1.2e8 150% 377.1 591.2 969.2 | 1.2e8 146% 1,370.0 2,050.0
giop 2.7e9 oom 21,301.4 43,1543  oom|8.4e7 181% 1,780.0 4,830.0
i-prot | 1.4e7 140% 28.4 414 70.6 | 1.4e7 145% 63.3  103.0

8-5Models that we modified are available at http://doiop.com/leader4DFSFIFO
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8.5.2 Parallel Scalability

To compare the parallel algorithms in LTSMIN, we use the options --threads=P
--strategy=[dfsfifo/cndfs], where P is the number of worker threads. In spin, we use -
DBFS_PAR, which also turns on lossy state hashing [[Hol12], and run the pan binary with
an option -uP. This turns on a parallel, linear-time, but incomplete, cycle detection al-
gorithm called Piggyback (PB) [Hol12]. It might also be unsound due its combination
with lossy hashing [BHRT3]. shows the obtained speedups: As expected,
reachability (see and PDFspro Scale almost ideally, while cNDFs exhibits sub-
linear scalability, even though it is the fastest parallel LTL solution (see [Chapter 7).
PB also scales sublinearly. Since LTSmiN sequentially competes with spiN
except for GIOP), scalability can be compared.

8.5.3 Parallel Memory Usage

We expected few state duplication on local queues F; (see . To verify this,
we measured the total size of all local queues and hash tables using counters for stric
and non-strict PDFSgo, and CNDFS. shows Qp = Yc1. p|F| +S;i| averaged
over 5 runs: Non-strict PDFSg;, shows little difference from the strict variant, and Qug
is at most 20% larger than Q; for all PDFSpe. Due to the randomness of the parallel
runs, we even have Q4¢3 < Q1 in many cases. Revisits occurred at most 2.6% using 48
cores. In the case of cNDFs, the combined stacks typically grow because of the larger
DFs searches. Accordingly, we found that PDFSpg,’s fotal memory use with 48 cores was
between 87% and 125% compared to sequential prs. In the worst case, PDFSg, (With
tree compression) used 52% of the memory use of PB (collapse compression and lossy
hashing) [BL13a]] — GIOP excluded as its state counts differ.

Table 8.4: Runtimes (sec) / queue sizes of the parallel algorithms: DFs, PDFSgro and
cNDFs in LTSMiIN, and PB in spin

DFS PDFSgyro CNDFS PB PDFSSIHC! | ppRslOSirict | cNpFs

T Tys | T Tg | Ty Tag| Ti Tuin|| Q1 Qag| O1 Qag | O1 Qsg

leader;|153.7 3.8(233.2 5.7| 925.7 51.4| 228.025.9||1.0e6 1.2e6|1.2e6 1.4e6|2.7e6 3.6e7
garp |377.1 8.8(591.2 13.1{1061.0 58.6|1180.0 70.9|{1.9¢7 2.0e7|1.9¢7 5.3e6|5.5¢6 6.5¢7
giop [2.1e4463.3|14.3e49.7¢2| oom oom| 1.2e3 57.8||1.1e9 8.4e8|1.1e9 8.4e8| oom oom
i-prot | 284 0.7 414 1.1 759 3.7 86.217.7||{1.0e6 1.1e6|1.0e6 1.3e6|8.3e5 1.0e7




8.5 Experimental Evaluation

50-

dfs
e~ garp
A giop2.nomig
40~ | -+ i-protocol2
>< leader5
30-
a
=1
S
@
o
o
2
20~
10-
0= | | | | |
0 10 20 3 40 50
Threads
(a) DFS
50-
cndfs
-~ garp
4 giop2.nomig
40~ | —+ i-protocol2
>< leader5
30-
a
=1
S
@
o
Q
2]
20-
10-
[ | | | | |
0 10 40 50

20 30
Threads

(c) CNDFs

50 =

50 -

dfsfifo
& garp
A giop2.nomig
—| i-protocol2
¢ leader5

0 10 20 30 40 50
Threads
(b) DFSgiro
piggyback
- garp
A\ giop2.nomig
—| i-protocol2
¢ leader5
] | | | | i
0 10 40 50

20 30
Threads

(d) spiN with parallel BFS

Figure 8.2: Speedups of DFs, PDFSg, and cNDFs in LTSwmiN, and Piggyback in spin
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8.5.4 Partial-Order Reduction Performance

LTSmIN’s por implementation (option --por) is based on stubborn sets [Val91b]|, de-
scribed in [Patl1], and is competitive to spiN’s [BL13al]. We extended it with the alter-
native provisos for bEseo: C2° and C27 . shows the relative number of states,
using the different algorithms in both tools: For all models, both LTSMin and spiN are
able to obtain reductions of multiple orders of magnitude using their prs algorithms.
We also observe that much of this benefit disappears when using the Nprs LTL algo-
rithm due to the cycle proviso, although spin often performs much better than LTSmin
in this respect. Also DFSgy, With progress states (column DstIFO), performs poorly:
apparently, the C2 proviso is so restrictive that many states are fully expanded. But
DFSpro With progress transitions (column DFSZFO) retains DFS’s impressive POR with at
most a factor 2 difference.

Table 8.5: Por (%) for prs’ ., DFsS,,, DFs and NDFs in spiN and LTSMIN

FIFO>

LTSmin SPIN

S

T
SFO NDFS DFS  NDFS

FIFO

SPIN

DFS DFS DFS

leader; | 0.32% 0.49% 99.99% 99.99% | 0.03%  1.15%
garp 1.90% 2.18%  4.29% 16.92% | 10.56% 12.73%
giop 1.86% 1.86%  3.77% oom | 1.60%  2.42%
i-prot | 16.14% 31.83% 100.00% 100.00% |24.01% 41.37%

8.5.5 Scalability of Parallelism and Partial-Order Reduction

We created multiple instances of the leaderpxr models by varying the number of nodes
N and expressed the progress LTL property in DIVINE. We start DIVINE’s state-of-the-
art parallel LTL-por algorithm, owcty, by: divine owcty [model] -wP -i30 -p. With the
options described above, we turned on por in LTSMIN and ran PDFSg, and CNDFs, for
comparison. We limited each run to half an hour (38’ indicates a timeout). Piggyback
reported contradictory memory usage and far fewer states (e.g. < 1%) compared to
DFs with Por, although it must meet more provisos. Thus we did not compare against
Piggyback and suspect a bug.

shows that PDFsy;, and POrR complement each other rather well: Without
por (left half of the table) the almost ideal speedup (U = % =40.8) allows to explore
one model more: N < 10 instead of only N = 9. When enabling por (right half of the
table), we see again multiple orders of magnitude reductions, while parallel scalability



Table 8.6: por and speedups for leaderpgg using PDFSgro, CNDFS and OWCTY
Alg. | IR [T T1  Tys U |[[R™N |TP% T8 Tex UreR

cNDFs | 3.6e7 2.3e8 502.6 12.0 41.8]279% 0.1% 211.8 n/a  nla
PDFSro | 3.667 2.3¢8 583.6 143 408| 1.5% 0.0%  12.9 36 35
owcry | 3.6e7 2.3e8 4987 519 9.6 12.6% 0.0% 5784 357 162
cNDFs | 2.4e8 1.7¢9  30° 907 30’ | 193% 5.4% 1102.7 na  nla
10 PDFSmro | 2.4e8 1.7¢9  30° 1093 30| 0.7% 0.1%  35.0 25 14.0
10 owcry |24e8 1.7¢9 30 663.1 30| 87% 22% 30 1563 3¢
11 PDFSmro | 300 30 300 30 30| S5.1e6 7.le6 109.8 53 207
11 owcry | 300 300 30 30 30°| 93e7 1.7¢8 30 10365 3¢
12 pDFSpro | 300 30 30 30 30°| 1.6e7 22¢7 369.1 112 33.0
13 poFSmro | 307 300 300 300 30| 6.6e7 9.2¢7 16405  38.1 43.0
14 pDFSpro | 300 30 300 300 30°| 2.0e8 29e8  30° 1203 30
15 poFSmro | 307 300  30° 30 30| 84e8 12¢9 300 5275 39

S v v v | =

reduces to U = 3.5 for N = 9, because of the small size of the reduced state space
(|RP°®|). When increasing the model size to N = 13 the speedup grows again to an
almost ideal level (U = 43). With por, the parallelism allows us to explore two more
models within half an hour, i.e., N < 15. While owcTy and NDFs also show this effect,
it is less pronounced due to their cycle proviso, allowing N < 11 for owcty and N <9
for NDFs.

As livelocks are disjoint from the class of weak LTL properties, owcTy could become
non-linear [BBRO9al], but it required only one iteration for leaderpgg.

As PDFsgo TeVisits states, the random next-state function could theoretically weaken
POR (as for NDEs, see[Section 8.2). But for all our 5 models, this did not occur.

8.5.6 On-The-Fly Performance

We created a leader election protocol with early (shallow) and another with late (deep)
injected NPcycles (see , [FarQ7]). shows the average runtime in seconds (7)

and counterexample length (C) over five runs. Since PDFSx, finds shortest counterexamplesm,
it outperforms cNDFs for the shallow version and pays a penalty for the deep version.

Both algorithms benefit greatly from massive parallelism (see also [LP11]).



Table 8.7: Runtimes and counterexample lengths for cNDFs and PDFSgro On synthetic
models containing livelocks at deep and shallow levels in the state space

CNDFS pDFS] CNDFS PDFS]

h T | Ti Tg || Ci Cag| C1 Cyg

shallow 30’ 7| 12 4 | 30 16 | 16 16
deep 16 (;‘_}Ce ) 2130 451 || 577 499 | 3 51

8.6 Conclusions

We showed, in theory and in practice, that model checking livelocks, an important sub-
set of liveness properties, can be made more efficient by specializing on it. For our
PDFSro implementation with progress transitions, POrR becomes significantly stronger

(cf. [Table 85), parallelization has linear speedup (cf. [Figure 8.2), and both can be
combined efficiently (cf. [Table 8.6).

Our results apply to a broader set of livelock properties that can be expressed more
directly using testing automata [[Val93|]. See [HPV02; [Han07|] for more extensive dis-
cussion and comparison to Biichi automata. Similarly, [LT04] presents a tested frame-
work more similar to the original from [Val93|, where non-progress is defined on ac-
tions, like the progress transitions that we employ. These papers all present algorithms
that are equal to modulo the different contexts (we define progress
states/transitions, whereas they define livelock-monitor states within the tester frame-
work that ‘listen’ to divergent traces where these are not to be allowed).



Part IV

Multi-Core Model Checking
for Timed Systems






Introduction

The parallel model checking procedures developed in the previous 2 parts are still lim-
ited to explicit-state systems. The current part extends these methods for the analysis of
timed systems.

Systems with continuous time behavior can be modeled using timed automata [[Alu99],
timed Petri nets [Ram74] and timed process calculi [BB91]]. The transfinite nature of
the continuous time variables, or clocks, makes explicit-state model checking infeasible,
except for when an approximating discretization step is applied beforehand [CHRO91;
GRUOS; (CVHO4; [She+10; BD98b; [BD98aj]l. A complete approach can however be
achieved by symbolically abstracting clock valuations as linear-(in)equality constraints.
To this end, region-based [AD94] and zone-based [Dil89] abstractions have been pro-
posed. Based on these finite abstractions, extensive tool support has been developed
over the past decade, of which the state-of-the-art for timed automata is arguably up-
paaL [LPYO7; BDLO4|.

However, existing solutions still exhibit shortcomings of both theoretical and prac-
tical nature. First of all, while uppaAL has been parallelized for distributed systems
almost a decade ago [BehOS5; [BHVOO], it is unclear whether, or even unlikely that, it
scales on modern multi-core computers. Unclear because the distributed version of
UPPAAL is unavailable, and unlikely because modern multi-core processors nowadays
have steeper memory hierarchies, cf.

Furthermore, extensive support for liveness properties is not available for timed
automata. While some tools support the full CTL or LTL, their time abstraction is still
limited. The coarsest abstraction methods, combine finite zone-based abstractions with
aggressive extrapolation [Beh+00], and on top of that use the partial-order induced by
the abstraction to prune parts of the state space during the search. The latter is called
subsumption or inclusion abstraction and does not preserve Biichi emptiness [Tri09].
In fact, it is an open theoretical problem whether the checking of liveness properties can



benefit from the coarsest subsumption abstraction:

“It would also be interesting to study whether other, coarser, zone-based
abstractions, such as the inclusion abstraction proposed in [DT98] or the
abstractions proposed in [Beh+06], can be used to check timed Biichi au-
tomata emptiness.”

[Tri09]

To extend the multi-core reachability methods from for timed automata, the
symbolic time abstractions, which are represented algorithmically as difference bound
matrices (DBMs) [Ben02], need to be stored together with the visited (explicit) states.
Because there is a many to one relation between the DBMs and the explicit states, the
hash table for the latter should be extended to a multimap.

[Chapter 9lexplains how we implement the timed automata for the language-independent
model checker LTSMin. To this end, the opaAaL model checker [Dal+11]] is used as a
frontend, which generates a library from a timed automata model that can be loaded by
LTSmin. The library implements the next-state generator for states that include a DBM.

Furthermore, a design is proposed for a concurrent multimap to store the explicit
and symbolic states, together with a parallel reachability algorithm that implements sub-
sumption abstraction. Mutual exclusion on the multimap is guaranteed by a fine-grained
locking mechanism that allows complex access patterns, while still providing enough
parallelism. We show that the algorithm is complete and does not revisit states, but we
also propose a lockless algorithms that allows for more parallelism, while dropping the
latter guarantee.

The parallel algorithms and data structure were implemented in LTSmin. Exper-
iments show that reachability scales reasonably and the non-blocking version almost
linearly without revisiting significantly many states. Because the flexible search-order
property of the reachability algorithm from was preserved, the influence of
different search orders could also be investigated. Results show the well-known ben-
efit of BFs in this area [BHVO0O0], but surprisingly also reveal a benefit of parallel DFs.
Because our concurrent multimap is compatible with the state compression technique
from we also demonstrate that the memory usage is almost as efficient as
upPAAL’s state-caching technique [BLPO3| (both techniques are orthogonal and could
be combined).

[Chapter 10|builds on these results to realize parallel LTL model checking for timed
automata for the first time. By using cNDFs together with the multimap from the pre-
ceding chapter, we obtain scalable timed LTL checking.

We further demonstrate that cNDFs can be extended to use the coarse subsumption
abstraction in multiple parts of the search for accepting cycles, without losing soundness
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and completeness. Generally, this is not the case, as subsumption abstraction introduces
cycles in the state space, prompting Tripakis to pose it as an open problem (see above).
Experimental results demonstrate that this abstraction could yield a 2-fold reduction of
the number of states.

The table above describes the contributions that the current part makes towards solv-
ing the goals of the thesis (c.f. [Table 1.1]in [Section 1.5.3). It shows that the scalable
multi-core model checking techniques developed for explicit-state formalisms is trans-
ferred to the domain of timed systems. Partial-order reduction is not considered in the
following chapters, but it will be revisited in the conclusion of the thesis.







Multi-Core Reachability for Timed Automata

Andreas Dalsgaard, Alfons Laarman, Kim G. Larsen, Mads Chr.
Olesen, Jaco van de Pol

Abstract

Model checking of timed automata is a widely used technique. But in order
to take advantage of modern hardware, the algorithms need to be parallelized.
We present a multi-core reachability algorithm for the more general class of well-
structured transition systems, and an implementation for timed automata.

Our implementation extends the opaAL tool to generate a timed automaton suc-
cessor generator in c++, that is efficient enough to compete with the uppaaL model
checker, and can be used by the discrete model checker LTSmiN, whose parallel
reachability algorithms are now extended to handle subsumption of semi-symbolic
states. The reuse of efficient lockless data structures guarantees high scalability and
efficient memory use.

With experiments we show that opAAL+LTSMIN can outperform the current
state-of-the-art, uppaaL. The added parallelism is shown to reduce verification
times from minutes to mere seconds with speedups of up to 40 on a 48-core ma-
chine. Finally, strict BFS and (surprisingly) parallel DFS search order are shown
to reduce the state count, and improve speedups.

About this chapter: The current chapter is based on the paper “Multi-core Reacha-
bility for Timed Automata”, which was published at FORMATS 2012 |Dal+12].

The original text remains largely unmodified, except for the removal of the general
introduction.



9.1 Introduction

The goal of the current chapter work is to develop scaling multi-core reachability for
timed automata [AD94] as a first step towards full multi-core LTL model checking. A
review of the history of discrete model checkers shows that indeed multi-core reacha-
bility is a crucial ingredient for efficient parallel LTL model checking (see[Section 9.2).
To attain our goal, we extended and combined several existing software tools:

LTSMiN isalanguage-independent model checking framework, comprising, inter alia,
an explicit-state multi-core backend [LPW11a; BPW10; BPWO09].

opraAL is a model checker designed for rapid prototype implementation of new model
checking concepts. It supports a generalized form of timed automata [Dal+11],
and uses the uppaaL input format.

The UPPAAL DBM library is an efficient library for representing timed automata
zones and operations thereon, used in the uppaaL model checker [BDLO4].

Contributions: We describe a multi-core reachability algorithm for timed automata,
which is generalizable to all models where a well-quasi-ordering on the behavior of
states exist [FSO1[]. The algorithm has been implemented for timed automata, and we
report on the structure and performance of this prototype.

Before we move on to a description of our solution and its evaluation, we first review
related work, and then briefly introduce the modeling formalism.

Overview: introduces some definitions of modeling formalisms and
enumerative model checking for explicit-state systems. In[Section 9.4] we describe how
opaAL and LTSMIN are combined and extended to support multi-core model checking
of well-structured transitions systems. [Section 9.5|and[Section 9.6|then explain in detail
how opaaL and LTSmiN were extended. Experiments are shown in[Section 9.7] We end
with conclusions in

9.2 Related Work

One efficient model checker for timed automata is the uppaaL tool [BDLO4; [Beh+02].
Our work is closely related to UPPAAL in that we share the same input format and reuse
its editor to create input models. In addition, we reused the open source UPPAAL DBM
library for the internal symbolic representation of time zones.



Distributed model checking algorithms for timed automata were introduced in
[BHVOO; BehO5]. These algorithms exhibited almost linear scalability (50-90% ef-
ficiency) on a 14-node cluster of that time. However, analysis also shows that static
partitioning used for distribution has some inherent limitations [BOS06]. Furthermore,
in the field of explicit-state model checking, the D1VINE tool showed that static parti-
tioning can be reused in a shared-memory setting [BROS8|]. While the problem of paral-
lelization is considerably simpler in this setting, this tool nonetheless featured subopti-
mal performance with less than 40% efficiency on 16-core machines (see[Chapter 2)). It
was soon demonstrated that shared-memory systems are exploited better by combining
local search stacks with a lockless hash table as shared passed set and an off-the-shelf
load balancing algorithm for workload distribution [San97a]]. Especially in recent ex-
periments on newer 48-core machines as reported in[Section 7.4] the latter solution was
clearly shown to have the edge with 50-90% efficiency.

Linear-time, on-the-fly liveness verification algorithms are based on depth-first search
(DFS) order (see [Part TII)). Next to the additional scalability, the shared hash table so-
lution also provides more freedom for the search algorithm, which can be pseudo DFS
and pseudo breadth-first search (BFS) order [LPW11al, but also strict BFS (see
tion 9.6.2). This freedom has already been exploited by parallel NDFS algorithms for
LTL model checking (see [Chapter 5|and [Chapter 7)) that are linear in the size of the in-
put graph (unlike their BFS-based counterparts). While these algorithms are heuristic in
nature, their scalability has been shown to be superior to their BFS-based counterparts.

9.3 Preliminaries

We will now define the general formalism of well-structured transition systems [FSO1};
Abd+96|, and specifically networks of timed automata under the zone abstraction [[CJ99]].

Definition 9.1 (Well-quasi-ordering). A well-quasi-ordering T is a reflexive and tran-
sitive relation over a set X, s.t. for any infinite sequence xo,x1,. .. eventually for some
i < jitwill hold that x; E x;.

)

In other words, in any infinite sequence eventually an element exists which is “larger’
than some earlier element.

Definition 9.2 (Well-structured transition system). A well-structured transition system
is a 3-tuple (S, —,C), where S is the set of states, —: S X S is the (computable) transition
relation and C is a well-quasi-ordering over S, s.t. if s — t then Vs’ .s C s there 3t'.s' —

/AT P

9-1With strong compatibility, see [FSO1]]




We thus require C to be a monotonic ordering on the behavior of states, i.e., if s C ¢
then ¢ has at least the behavior of s (and possibly more), and we say that ¢ subsumes or
covers s.

One instance of a well-structured transition system is shaped by the symbolic se-
mantics of timed automata. Timed automata are finite state machines with a finite set of
real-valued, resettable clocks. Transitions between states can be guarded by constraints
on clocks, denoted G(C).

Definition 9.3 (Timed automaton). An extended timed automaton is a 7-tuple A =
(L,C,Act,so,—,Ic) where

e L is a finite set of locations, typically denoted by {
e C is a finite set of clocks, typically denoted by ¢

e Act is a finite set of actions

e 5o € L is the initial location

e —+C LxG(C)xAct x2° x L is the (non-deterministic) transition relation. We

normally write { Ly for a transition, where { is the source location, g is the
guard over the clocks, a is the action, and r is the set of clocks reset.

o Ic:L— G(C) is a function mapping locations to downwards closed clock invari-
ants.

Using the definition of extended timed automata we can now define networks of
timed automata, as modeled by uppaaL, see [BDLO4] for details. A network of timed
automata is a parallel composition of extended timed automata that enables synchro-
nization over a finite set of channel names Chan. We let ch! and ch? denote the output
and input action on a channel ch € Chan.

Definition 9.4 (Network of timed automata). Let Act = {ch!,ch?|ch € Chan}U {7} be
a finite set of actions, and let C be a finite set of clocks. Then the parallel composition
of extended timed automata A; = (L,~,C,Act,s67 —>,~,Ié)f0r all 1 <i<n, wheren € N,
is a network of timed automata, denoted A = A;||Az||...||Au.

The concrete semantics of timed automata [BDL04| gives rise to a possibly uncount-
able state space. To model check it a finite abstraction of the state space is needed; the
abstraction used by most model checkers is the zone abstraction [BouO4]. Zones are
sets of clock constraints that can be efficiently represented by difference bound matri-
ces (DBMs) [Ben02f]. The fundamental operations of DBMs are:



e D 1 modifying the constraints such that the DBM represents all the clock valua-
tions that can result from delay from the current constraint set

e DN D' adding additional constraints to the DBM, e.g. because a transition is taken
that imposes a clock constraint (guard clock constraints can also be represented
as a DBM, and we will do so)@ The additional constraints might also make the
DBM empty, meaning that no clock valuations can satisfy the constraints.

e D[r] where r C C is a clock reset of the clocks in r.

e D/B doing maximal bounds extrapolation, where B : C — Ny is the maximal
bounds needed to be tracked for each clock. Extrapolation with respect to maxi-
mal bounds [Beh+03]] is needed to make the number of DBMs finite. Basically,
it is a mapping for each clock indicating the maximal possible constant the clock
can be compared to in the future. It is used in such a way that if the value of a
clock has passed its maximal constant, the clock’s value is indistinguishable for
the model.

e D C D' for checking if the constraints of D" imply the constraints of D, i.e. D’ is
a more relaxed DBM. D’ has the behavior of D and possibly more.

Lemma 9.1. Timed automata under the zone abstraction are well-structured transition
systems: (S,=pgm,Act,C) s.t.

1. S consists of pairs (£,D) where { € L, and D is a DBM.
2. =-ppm Is the symbolic transition function using DBMs, and Act is as before

3. C:S— Sisdefinedas (¢,D)C (¢!,D) iff (=¥, and D C D'

Remark that part of the ordering C is compared using discrete equality (the location
vector), while only a subpart is compared using a well-quasi-ordering. Without loss of
generality, and as done in [Dal+11]], we can split the state into an explicit part S, and
a symbolic part X, s.t. the well-structured transition system is defined over S x £. We
denote the explicit part as s,7,r € S and the symbolic part of states by o, 7,p, 7,V € X,
and a state as a pair (s,0).

Model checking of safety properties is done by proving or disproving the reachability
of a certain concrete goal location s,.

°2The DBM might need to be put into normal form after more constraints have been added [Bou04]




Definition 9.5 ((Safety) Model checking of a well-structured transition system). Given
a well-structured transition system (S x X,—,C), an initial state (so,00) € S X X, and

a goal location s does a path exist (s9,00) — -+ — (Sg, Op).

In practice, the transition system is constructed on-the-fly starting from (so, 6p) and

recursively applying — to discover new states. To facilitate this, we extend the next-state
interface of piNs with subsumption:

Definition 9.6. A next-state interface with subsumption has three functions:
INITIAL-STATE() = (S0, 0p),

NExT-sTATE((s,0)) = {(s1,01), ..., (sn, On) } returning all successors of (s,0), (s,0) —
(si,0:), and

covers(6',6) = 6 C o returning whether the symbolic part ¢’ subsumes ©.

9.4 A Multi-Core Timed Reachability Tool

For the construction of our real-time multi-core model checker, we made an effort to
reuse and combine existing components, while extending their functionality where nec-
essary. For the specification models, we use the uppaaL XML format. This enables the
use of its extensive real-time modeling language through an excellent user interface.
To implement the model’s semantics (in the form of a next-state interface) we rely on
opaAL and the UPPAAL DBM librarym Finally, LTSMIN is used as a model checking
backend, because of its language-independent design.

1
! Successor Successor
Uppaal-model : generator generator
xml-file ' C++-file object-file
- = = = = =PINS
C++ compiler LTSmin

Figure 9.1: Reachability with subsumption [Dal+11]]

gives an overview of the new toolchain. It shows how the XML input
file is read by opaaL which generates c++ code. The c++ file implements the piNs
interface with subsumption specifically for the input model. Hence, after compilation
(c++ compiler), LTSMIN can load the object file to perform the model checking.

93nhttp://people.cs.aau.dk/~adavid/UDBM/
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Previously, the opaaL tool was used to generate Python code [Dal+11]], but im-
portant parts of its infrastructure, e.g., analyzing the model to find max clock con-
stants [Beh+03]], can be reused. In we describe how opaAL implements
the semantics of timed automata, and the structure of the generated c++ code.

The pins interface of the LTSmin tool [BPW10] has been shown to enable efficient,
yet language-independent, model checking algorithms of different flavors, inter alia:
distributed [BPW10], symbolic [BPW10|] and multi-core reachability [LPW11a] (see
[PartTI), and LTL model checking [BL13a] (see[Part IIT). We extended the pins interface
to distinguish the new symbolic states of the oraaL successor generator according to
[Definition 9.6] In|Section 9.6, we describe our new multi-core reachability algorithms
with subsumption.

9.5 Successor Generation using opaal

The opaaL tool was designed to rapidly prototype new model checking features and
as such was designed to be extended with other successor generators. It already im-
plements a substantial part of the uppaAaL features. For an explanation of the uppaaL
features see [BDLO4| p. 4-7]. The new c++ oPAaAL successor generator supports the fol-
lowing features: templates, constants, bounded integer variables, arrays, selects, guards,
updates, invariants on both variables and clocks, committed and urgent locations, bi-
nary synchronization, broadcast channels, urgent synchronization, selects, and much of
the C-like language that uppPAAL uses to express guards and variable updates.

A state in the symbolic transition system using DBMs, is a location vector and a
DBM. To represent a state in the c++ code we use a struct with a number of components:
one integer for each location, and a pointer to a DBM object from the uppaaL DBM
library. Therefore a state is a tuple: (¢y,...,¢,,D).

The INTTIAL-STATE function is rather straightforward: it returns a state struct initial-
ized to the initial location vector, and a DBM representing the initial zone (delayed, and
with invariants applied as necessary). The structure of the NEXT-STATE function is more
involved, because it needs to consider the syntactic structure of the model, as can be

At[Line 4] we consider all outgoing transitions for the current location of each pro-
cess (Line 3). If the transition is internal, we can evaluate it right away, and possibly
generate a successor at[Line 12} If it is a sending synchronization (ch!), we need to
find possible synchronization partners (Line T3). So again we iterate over all processes
and the transitions of their current locations (Cine T4H2T).

In the generated c++ code a few optimizations have been made, compared to[Algo]
The loops on line[Line 3| and [Line 14]have been unrolled, since the number
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Algorithm 9.1 Overall structure of the successor generator

proc NEXT-STATE(siy = (41,...,4n,D))
out_states ;=0
for ¢; € (y,....¢,
for all ¢; £27 14
D' :=DnNg
it D' #£0 > is the guard satisfied?
ifa=r1 > this is not a synchronizing transition
D =Dt > clock reset, delay
D' :=D' NIL(6) N Mg I (L) > apply clock invariants
it D' #0

D =D//B(Ly,..., 0. L)

out_states := out_states U {({y,...,¢,...,6,,D')}

else if a = ch! > binary sync. sender
forﬁj el by, jF#i
gj,ch,r; , . .
forall {j —— ¢} > find receivers
ifD:=D'Ng;#0 > receiver guard satisfied?
D" :=D"[r][rj] t > clock resets, delay
D" := D" N IE(6) NIEE) N Mgy T () > apply clock invariants
itD +0

D' =D /Bty Uy b )
out_states := out_states U {(/;,. ..,llf,...,l;, oy, D)}
return out_states

of processes they iterate over is known beforehand. In that manner the transitions to
consider can be efficiently found. As an optimization, before starting the code genera-
tion, we compute the set of all possible receivers for all channels, for the unrolling of
In practice there are usually many receivers but few senders for each channel,
resulting in the unrolling being an acceptable trade-off.

When doing the max bounds extrapolation (/) in[Algorithm 9.1} we obtain the bounds
from a location-dependent function B: Ly X --- x L, — (C — Np). This function is pre-
computed in oraAL using the method described in [Beh+03].

Some features are not formalized in this work, but have been implemented for ease
of modeling. We support integer variables, urgency that can be modeled using urgen-
t/committed locations and urgent channels, but also channel arrays with dynamically
computed senders, broadcast channels, and process priorities. These are all imple-
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mented as simple extensions of Other features are supported in the
form of a syntactic expansion, namely: selects, and templates.

To make the NEXT-STATE function thread-safe, we had to make the uppaaL DBM li-
brary thread-safe. Therefore, we replaced its internal allocator with a concurrent mem-
ory allocator (see[Section 9.7). We also replaced the internal hash table, used to filter
duplicate DBM allocations, with a concurrent hash table.

9.6 Well-Structured Transition Systems in LTSmin

The current section presents the parallel reachability algorithm that was implemented
in LTSmiN to handle well-structured transition systems. According to
we can split up states into a discrete part, which is always compared using equality (for
timed automata this consists of the locations and variables), and a part that is compared
using a well-quasi-ordering (for timed automata this is the DBM).

We recall the sequential algorithm from [Dal+11]] and adapt it to use

the next-state interface with subsumption. At its basis, this algorithm is a search with
a waiting set (W), containing the states to be explored, and a passed set (P), containing
the states that are already explored.

New successors (¢, T) are added to W (Line 9)), but only if they are not subsumed by
previous states (Line 8). Additionally, states in the waiting set W that are subsumed by
the new state are discarded (Line 9)), avoiding redundant explorations.

Algorithm 9.2 Reachability with subsumption [Dal+11]]

proc reachability(s,)
W = { INITIAL-STATE() }; P =0
while W # 0
W =W\ (s,0) for some (s,0) € W
P:=PU{(s,0)}
for (1,7) € NEXT-STATE((s,0)) do
if 1 = s, then report & exit
if Ap: (t,p) € WUPACOVERS(p,T)
W :=W\{(t,p) | COVERS(7,p)}U(¢,7)
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9.6.1 A Parallel Reachability Algorithm with Subsumption

In the parallel setting, we localize all work sets (Q,, for each worker p) and create
a shared data structure L storing both W and P. We attach a status flag passed or
waiting to each state in L to create a global view of the passed and waiting set and
avoid unnecessary reexplorations. L can be represented as a multimap, saving multiple
symbolic state parts with each explicit state part L : S — X*. To make L thread-safe,
we protect its operations with a fine-grained locking mechanism that locks only the part
of the map associated with an explicit state part s: lock(L(s)), similar to the spinlocks
used in An off-the-shelf load balancer takes care of distributing work at the
startup and when some Q) runs empty prematurely. This design corresponds to the
shared hash table approach discussed in [Section 9.2]and avoids a static partitioning of
the state space.

[ATgorithm 9.3|presents the discussed design. The algorithm is initialized by calling
reachability with the desired number of threads P and a discrete goal location s,. This
method initializes the shared data structure L and gets the initial state using the INITIAL-
sTATE function from the next-state interface with subsumption. The initial state is then

Algorithm 9.3 Reachability with cover update of the waiting set

global L : S — (X x {waiting, passed})*
21 proc search((sg,09),Sg.P)

proc reachability (P, s¢) 22 Q,:=if p=1then {(s9,00)} else 0
L=8S—0 23 while 0, #0 V balance(Q))
(80,00) = s = INITIAL-STATE() 24 0, =0, )\ (s,0) for some (s,0) € 0,
L(sg) := (op,waiting) 25 if ~grab(s, o) then continue
search(s,sq,1)|...||search(s,sg, P) 26 for (1,7) € NEXT-STATE((s,0)) do

27 if 1 = 5, then report & exit

proc update(z, ) 28 if —update(z, 7)
lock(L(t)) 29 Qp =0,U(t,7)
for (p,f) € L(t) do

if COVERS(p, 1) 31 proc grab(s,o)
unlock(L(1)) 32 lock(L(s))
return true 33 ifo & L(s)Vpassed =L(s,0)
else if f = waiting A COVERS(7,p) 34 unlock(L(s))
L(r) == L(t) \ (p,waliting) 35 return false
L(t) = L(t) U (7, waiting) 36 L(s,0) :=passed
unlock(L(z)) 37  unlock(L(s))

return false 38  return true




added to L and the worker threads are initialized at Worker thread 1 explores
the initial state; work load is propagated later.

The while loop on corresponds closely to the sequential algorithm, in a
quick overview: a state (s,0) is taken from the work set at its flag is set to
passed by grab if it were not already, and then the successors (¢, 7) of (s, o) are checked
against the passed and the waiting set by update. We now discuss the operations on L
(update, grab) and the load balancing in more detail.

To implement the subsumption check (line[Line 8H9]in[Algorithm 9.2)) for successors
(¢,7) and to update the waiting set concurrently, update is called. It first locks L on ¢.
Now, for all symbolic parts and status flag p, f associated with ¢, the method checks if
7 is already covered by p. In that case (¢, 7) will not be explored. Alternatively, all p
with status flag waiting that are covered by 7 are removed from L(¢) and 7 is added. The
update algorithm maintains the invariant that a state in the waiting set is never subsumed
by any other state in L: VsV(p, f),(p’,f) € L(s): f = waitngAp #p' = p Zp’
(Inv. 1). Hence, similar to [Algorithm 9.2]Line 8H9)] it can never happen that (7, 7) first
discards some (z,p) from L(s) (Line 16) and is discarded itself in turn by some (z,p")
in L(s) (Line 12), since then we would have p C 7 C p’; by transitivity of C and the
invariant, p and p’ cannot be both in L(¢). Finally, notice that update unlocks L(¢) on
all paths.

The task of the method grab is to check if a state (s, ) still needs to be explored, as
it might have been explored by another thread in the meantime. It first locks L(s). If &
is no longer in L(s) or it is no longer globally flagged waiting , it is discarded
(Cine 25). Otherwise, it is “grabbed” by setting its status flag to passed. Notice again
that on all paths through grab, L(s) is unlocked.

Finally, the method balance handles termination detection and load balancing. It
has the side-effect of adding work to Q,. We use a standard solution [San97b].

9.6.2 Exploration Orders

The shared hash table approach gives us the freedom to allow for a DFS or BFS explo-
ration order depending on the implementation of Q. Note, however, that only pseudo-
DFS/BFS is obtained, due to randomness introduced by parallelism.

It has been shown for timed automata that the number of generated states is quite
sensitive to the exploration order and that in most cases strict BFS shows the best re-
sults [BHVOO]. Fortunately, we can obtain strict BFS by synchronizing workers be-
tween the different BFS levels. To this end, we first split Q, into two separate sets that
hold the current BFS level (C),) and the next BFS level (N,,) [Aga+10|]. The order within
these sets does not matter, as long as the current is explored before the next set. Load bal-
ancing will only be performed on C,, hence a level terminates once C, = 0 for all p. At
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Algorithm 9.4 Strict parallel BFS

proc search(sg, Go, p)
C, =if p=1then {(so,0p)} else 0
do
while C, # 0 V balance(C),)
Cp :=Cp\ (s,0) for some (s,0) € C),

N, =N, U(t,1)
load = reduce(sum, |N,|,P)
Cp, Ny =N, 0

while load # 0

this point, if N, = 0 for all p, the algorithm can terminate because the next BFS level is
empty. The synchronizing reduce method counts ):f):, |N;| (similar to mpi_reduce).

shows a parallel strict-BFS implementation. An extra outer loop
iterates over the levels, while the inner loop (Line 4H7) is the same as in[Algorithm 9.3

Except for the lines that add and remove states to and from the work set, which now
operate on N, and C,,. The (pointers to) the work sets are swapped, after the reduce call
at[Cine § calculates the load of the next level.

9.6.3 A Data Structure for Semi-Symbolic States

In[Chapter 2] we introduced a lockless hash table, which we reuse here to design a data
structure for L that supports the operations used in[Algorithm 9.3] To allow for massive
parallelism on modern multi-core machines with steep memory hierarchies, it is crucial
to keep a low memory footprint. To this end, lookups in the large table of state data are
filtered through a separate smaller table of hashes. The table assigns a unique number
(the hash location) to each explicit state stored in it: D: S — N. In finite reality, we
have: D: S — {1,...,N}.

We now reuse the state numbering of D to create a multimap structure for L. The first
component of the new data structure is an array I[N] used for indexing on the explicit
state parts. To associate a set of symbolic states (pointers to DBMs) with our explicit
state stored in D[x]|, we are going to attach a linked list structure to I[x]. Creating a
standard linked list would cause a single cache line access per element, increasing the
memory footprint, and would introduce costly synchronizations for each modification.
Therefore, we allocate multi-buckets, i.e., an array of pointers as one linked list element.
To save memory, we store lists of just one element directly in / and completely fill the



Figure 9.2: Data structure for L, and operations

last multi-bucket.

shows three instances of the discussed data structure: L,L’ and L”. Each
multimap is a pointer (arrow) to an array / shown as a vertical bucket array. L contains
{(s,0),(t,7),(t,p),(t,v)}. We see how a multi-bucket with (fixed) length 3 is created
for ¢, while the single symbolic state attached to s is kept directly in /. The figure shows
how & is moved when (s, 7) is added by the add operation (dashed arrow), yielding L'.
Adding 7 to t would have moved v to a new linked multi-bucket together with 7.

Removing elements from the waiting list is implemented by marking bucket entries
as tombstone, so they can later be reused (see L”). This avoids memory fragmentation
and expensive communication to reuse multi-buckets. For highest scalability, we allo-
cate multi-buckets of size 8, equal to a cache line. Other values can reduce memory
usage, but we found this sufficiently efficient (see[Section 9.7).

We still need to deal with locking of explicit states, and storing of the various flags
for symbolic states (waiting/passed). Internally, the algorithms also need to distinguish
between the different buckets: empty, tomb stone, linked list pointers and symbolic state
pointers. To this end, we can bit-cram additional bits into the pointers in the buckets,

Algorithm 9.5 Bit layout of word-sized bucket

struct link_or_dbm {

bit pointer[60]

bit flag € {waiting, passed}

bit lock € {locked, unlocked}

bit status|2] € {empty, tomb,dbm_ptr,list_ptr}
}




as is shown in|Algorithm 9.5| Now lock(L(s)) can be implemented as a spinlock using
the atomic compare-and-swap (CAS) instruction on I[s] (see [Section 2.2). Since all
operations on L(s) are done after lock(L(s)), the corresponding bits of the buckets can

be updated and read with normal load and store instructions.

9.6.4 Improving Scalability through a Non-Blocking Implemen-
tation

The size of the critical regions in[Algorithm 9.3|depends crucially on the |X|/|S] ratio; a
higher ratio means that more states in L(¢) have to be considered in the method update

(t,7), affecting scalability negatively. A similar limitation is reported for distributed
reachability [BOS06]. Therefore, we implemented a non-blocking version: instead of
first deleting all subsumed symbolic states with a waiting flag, we atomically replace
them with the larger state using CAS. For a failed CAS, we retry the subsumption check
after a reread. L can be atomically extended using the well-known read-copy-update
technique. However, workers might miss updates by others, as Inv. 1 no longer holds.
This could cause |X| to increase again.

9.7 Experiments

To investigate the performance of the generated code, we compare full reachability in
opaAL+LTSmiIN with the current state-of-the-art (UPPAAL)H To investigate scalability,
we benchmarked on a 48-core machine (a four-way AMD Opteron™ 6168) with a vary-
ing number of threads. Statistics on memory usage were gathered and compared against
upPAAL. We also experimented with different exploration orders and tree compression
from Experiments were repeated 5 times.

We consider three models from the uppaAL demos: viking (one discrete variable,
but many synchronizations), t rain—gate (relatively large amount of code, several
variables), and £ischer (very small discrete part). Additionally, we experiment with a
generated model, t rain-crossing, which has a different structure from most hand-
made models. For some models, we created multiple numbered instances, the numbers
represent the number of processes in the model.

For uppaAL, we ran the experiments with BFS and disabled space optimization. The
opaal_ltsmin scriptin opaaL was used to generate and compile models. In LTSMIN
we used a fixed hash table (-—state=table) size of 226 states (-s26), waiting set
updates as in[Algorithm 9.3 (-u1) and multi-buckets of size 8 (-18).

9.4

OPAAL is available at https://code.launchpad.net/~opaal-developers/opaal/
opaal-ltsmin-succgen, LTSMIN athttp://fmt.cs.utwente.nl/tools/ltsmin/
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9.7.1 Performance & Scalability

shows the reachability runtimes of the different models in uppaAL and
oPAAL+LTSMIN with strict BFS (-—strategy=sbfs). Except for fischer6, we
see that both tools compete with each other on the sequential runtimes, with 2 threads
however opaaL+LTSmIN is faster than uppaaL. With the massive parallelism of 48
cores, we see how verification tasks of minutes are reduced to mere seconds. The outlier,
fischerg, is likely due to the use of more efficient clock extrapolations in uPPAAL,
and other optimizations, as witnessed by the evolution of the runtime of this model
in [Beh+11; |Amn+01]].

Table 9.1: S, || (%) and runtimes (sec) in upPAAL and oPAAL+LTSMIN (strict BFES)
S| UPPAAL orPAAL+LTSMIN (cores)

T |Z] ||z \Z4s|‘ n Th Tt T T T
train-gate-N10|7e+07 [837.4 1.0/ 1.0 1.0/573.3 297.8 76.7 39.4 21.1 144
viking17 1le+07|207.8 1.0| 1.5 1.5|331.5 1725 442 227 119 8.6
train-gate-N9 |7e+06| 76.8 1.0| 1.0 1.0| 51.8 275 72 37 20 14
viking15 3e+06| 38.0 1.0| 1.5 15| 67.0 348 97 51 30 23
train-crossing |3e+04| 48.3 20.8(16.1 17.3| 23.1 37.8 37 21 14 14
fischer6 le+04| 0.1 0.3|50.1 50.1(177.3 112.3 394 304 27.9 30.3

We noticed that the 48-core runtimes of the smaller models were dominated by the
small BES levels at the beginning and the end of the exploration due to synchronization
in the load balancer and the reduce function. This overhead takes consistently 0.5—1
second, while it handles less than thousand states. Hence, to obtain useful scalability
measurements we excluded this time for the benchmarks.

To investigate the scalability better, we plotted the speedups in using
the average runtimes from [Table 9.1] The standard deviation of the speedup is plotted
as vertical lines (mostly negligible, hence invisible). Most models show almost linear
scalability with a speedup of up to 40, e.g. train—-gate-N10. As expected, we see
that a high |X|/|S| ratio causes low scalability (see fischer and train-crossing
and [Table 9.1). Therefore, we tried the non-blocking variant of our

algorithm (-n). As expected, the speedups in improve and the runtimes
even show a threefold improvement for £ischer. 6 (Table 9.2). The efficiency on 48




Table 9.2: |2 (&

%) and runtimes (sec) with non-blocking strict BFS, pseudo DFS and
pseudo BFS

NB Strict BFS (Pseudo) DFS (Pseudo) BFS
] [Zag] Ti Tag | |Z4| |Zas] T Tag [|Z4] [Zas] Ti Tag

train-gate-N10| 1.0 1.0547.9 14,5/ 1.0 1.0 647.8 15.6] 1.0 1.0559.3 13.1
viking17 1.5 153201 92| 1.6 1.6 3865 9.1 1.5 153256 7.8
train-gate-N9 | 1.0 1.0 51.2 14, 1.0 1.0 61.7 1.7[ 1.0 1.0 519 1.6
viking15 15 15 648 25 16 16 802 3.1 15 15 660 23
train-crossing [16.1 16.1 23.1 0.9/169.8 179.0 3371.0 297.4|16.1 37.1 24.5157.5
fischer6 50.1 50.1 196.1 10.7| 54.4 39.4 405.1 10.6|50.1 58.1206.0 32.3

cores remains closely dependent to the |X|/|S| ratio of the model (or the average length
of the lists in the multimap), but the scalability is now at least sublinear and not stagnant
anymore.

We further investigated different search orders. shows results with pseudo
BFS order (--strategy=bfs). While speedups become higher due to the lacking
level synchronizations, the loose search order tends to reach “large” states later and
therefore generates more states for two of the models (|Z;| vs [E4g| in[Table 9.2). This
demonstrates that our strict BFS implementation indeed pays off.

Finally, we also experimented with randomized DFS search order (-—perm=rr
—-—strategy=dfs). shows that DFS causes again more states to be gener-
ated. But, surprisingly, the number of states actually reduces with the parallelism for the
fischer6 model, even below the state count of strict BFS from({Table 9.1]! This causes
a superlinear speedup in and threefold runtime improvement over strict BFS.
We do not consider this behavior as an exception (even though train-crossing
does not show it), since it is compatible with our observation that parallel DFS finds

shorter counterexamples than parallel BFS (see [Section 7.4.4).

9.7.2 Design Decisions

Some design decisions presented here were motivated by earlier work that has proven
successful for multi-core model checking (see [Part II] and [Part TIT). In particular, we
reused the shared hash table and a synchronous load balancer [San97b]. Even though
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we observed load distributions close to ideal, a modern work stealing solution might
still improve our results, since the work granularity for timed reachability is higher than
for untimed reachability. The main bottlenecks, however, have proven to be the increase
in state count by parallelism and the cost of the spinlocks due to a high |X|/|S| ratio. The
latter we partly solved with a non-blocking algorithm. Strict BFS orders have proven to
aid the former problem and randomized DFS orders could aid both problems.

9.7.3 Memory Usage

[Table 9.3|shows the memory consumption of uppaAL (U-S0) and sequential oPAAL+LTSMIN
(O+L1) with strict BFS. From it, we conclude that our memory usage is within 25% of
uppaAL’s for the larger models (where these measurements are precise enough). Fur-
thermore, we extensively experimented with different concurrent allocators and found
that TBB malloc (used in the current chapter) yields the best performance for our algo-
rithmsE] Its overhead (O+L vs O+L4g in appears to be limited to a moderate
fixed amount of 250MB more than the sequential runs, for which we used the normal
glibc allocator.

We also counted the memory usage inside the different data structures: the multimap
L (including partly-filled multi-buckets), the hash table D, the combined local work sets
(Q), and the DBM duplicate table (dbm). As we expected the overhead of the 8-sized
multi-buckets is little compared to the size of D and the DBMs. We may however
replace D with the compressed, parallel tree table (T) from The resulting
total memory usage (O+L”), can now be dominated by L, as is the case for vikingl7.
But if we reduce L to a linked list (-=12), its size shrinks only by 60% to 214MB for
this model (L2). Just a modest gain.

Table 9.3: Memory usage (MB) of both uppaaL (U-SO and U-S2) and opAAL+LTSMIN
T D L L2 Q dbm|O+L; O+Lys O+L] O+LI[U-S0 U-S2

train-gate-N10| 777 5989 499 499 249 1363| 8101 8241 2790 3028 |6091 3348
viking17 156 1040 536 214 40 87| 1704 1931 828 1047|1579 722
train-gate-N9 | 81 549 50 50 24 61| 684 815 214 347| 607 332
viking15 32 190 112 44 8 55| 364 581 203 423 | 333 162
train-crossing 0 2 5 7 0 419] 426 623 425 622| 48 64
fischer6 0 0 5 9 1 176] 429 512 290 429 0 4

95¢f. nttp://fmt.cs.utwente.nl/tools/ltsmin/formats—2012/ for additional data


http://fmt.cs.utwente.nl/tools/ltsmin/formats-2012/

For completeness, we included the results of UPPAAL’s state space optimization (U-
S2). As expected, it also yields great reductions, which is the more interesting since the
two techniques are orthogonal and could be combined.

9.8 Conclusions

We presented novel algorithms and data structures for multi-core reachability on well-
structured transition systems and an efficient implementation for timed automata in par-
ticular. Experiments show good speedups, up to 40 times on a 48-core machine and
also identify current bottlenecks. In particular, we see speedups of more than 60 times
compared to upPAAL. Memory usage is limited to an acceptable maximum of 25% more
than uPPAAL.

Our experiments demonstrate the flexibility of the search order that our parallel
approach allows for. BFS-like order is shown to be occasionally slightly faster than
strict BFS but is substantially slower on other models, as previously observed in the
distributed setting. A new surprising result is that parallel randomized (pseudo) DFS
order sometimes reduces the state count below that of strict BFS, yielding a substantial
speedup in those cases.

Previous work has shown that better parallel reachability in[PartTI|crucially enables
new and better solutions to parallel model checking of liveness properties (see([Part IT).
Therefore, our natural next step is to port multi-core nested depth-first search solutions
to the timed automata setting.

Because of our use of generic toolsets, more possibilities are open to be explored.
The opaaL support for the upPaAL language can be extended and support for optimiza-
tions like symmetry reduction and partial-order reduction could be added, enabling eas-
ier modeling and better scalability. Additionally, lattice-based languages [Dal+11|] can
be included in the c++ code generator. On the backend side, the distributed [BPW10]]
and symbolic [BPW10] algorithms in LTSmin can be extended to support subsumption,
enabling other powerful means of verification. We also plan to add a join operator to
the pins interface, to enable abstraction/refinement-based approaches [Dal+11]].
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Abstract

The current chapter contributes to the multi-core model checking of timed au-
tomata (TA) with respect to liveness properties, by investigating checking of TA
Biichi emptiness under the very coarse inclusion abstraction or zone subsumption,
an open problem in this field.

We show that in general Biichi emptiness is not preserved under this abstrac-
tion, but some other structural properties are preserved. Based on those, we pro-
pose a variation of the classical nested depth-first search (Nprs) algorithm that
exploits subsumption. In addition, we extend the multi-core CNDFs algorithm with
subsumption, providing the first parallel LTL model checking algorithm for timed
automata.

The algorithms are implemented in LTSmin, and experimental evaluations show
the effectiveness and scalability of both contributions: subsumption halves the
number of states in the real-world FDDI case study, and the multi-core algorithm
yields speedups of up to 40 using 48 cores.

About this chapter: The current chapter is based on the paper “Multi-core Empti-
ness Checking of Timed Blichi Automata Using Inclusion Abstraction”, which was
published at CAV 2013 |Laa+13b].

Compared to the original text, we extended the discussion on the implementation in

relating this content more closely to the prequel work in
This also allows for a more detailed discussion of the scalability results, as reflected

by the added conclusion (Section 10.7). We also shortened the title.



10.1 Introduction

Model checking safety properties can be done with reachability, but only guarantees
that the system does not enter a dangerous state, not that the system actually serves
some useful purpose. To model check such liveness properties is more involved since
they state conditions over infinite executions, e.g. that a request must infinitely often
produce a result. One of the most well-known logics for describing liveness properties
is Linear Temporal Logic (LTL) [BKOS|.

The automata-theoretic approach for LTL model checking [VW86] solves the prob-
lem efficiently by translating it to the Biichi emptiness problem, which has been shown
decidable for real-time systems as well [AD94]]. However, its complexity is exponential,
both in the size of the system specification and of the property. In the current chapter,
therefore, we consider two possible ways of alleviating this so-called state-space ex-
plosion problem: (1) by utilizing the many cores in modern processors, and (2) by
employing coarser abstractions to the state space.

Related work. The verification of timed automata was made possible by Alur and
Dill’s region construction [AD94]], which represents clock valuations using constraints,
called regions. A max-clock constant abstraction, or k-extrapolation, bounded the num-
ber of regions. Since the region construction is exponential in the number of clocks and
constraints in the TA, coarser abstractions such as the symbolic zone abstraction have
been studied [Dil89], and also implemented in, among others, the state-of-the-art model
checker uppaaL [LPYO97]. Later, the k-extrapolation for zones was refined to include
lower clock constraints in the so-called lower/upper-bound (LU) abstraction proposed
in [Beh+06]|. Finally, the inclusion abstraction, or simply subsumption, prunes reacha-
bility according to the partial order of the symbolic states [DT9§]. All these abstractions
preserve reachability properties [DT98; Beh+00].

Model checking LTL properties on timed automata, or equivalently checking timed
Biichi automata (TBA) emptiness [HS10], was proven decidable in [AD94]], by using the
region construction. Bouajjani et al. [BTY97] showed that the region-closed simulation
graph preserve TBA emptiness. Tripakis [Tri09] proved that the k-extrapolated zone
simulation graph also preserves TBA emptiness, while posing the question whether
other abstractions such as the LU abstraction and subsumption also preserve this prop-
erty. Li [Li09] showed that the LU abstraction does in fact preserve TBA emptiness.
The status of subsumption in LTL model checking is still open.

One way of establishing TBA emptiness on a finite simulation graph is the nested
depth-first (NDrs) algorithm [Cou+92; [HPY96]. Recently, some multi-core version of
these algorithms were introduced by Evangelista and Laarman et al. [EPY 11} |Laa+11;



Eva+12] (see for [Laa+11; [Eva+12]])). These algorithms have the following
properties: their runtime is linear in the number of states in the worst case while typi-
cally yielding good scalability; they are on-the-fly [LP11]] and yield short counterexam-
ples The latest version, called CNDFs, combines all these qualities and

decreases memory usage (see[Section 7.4).

In previous work, we parallelized reachability for timed automata using the men-
tioned abstractions (see[Chapter 9). It resulted in almost linear scalability, and speedups
of up to 60 on a 48-core machine, compared to uppaaL. The current work extends this
previous work to the setting of liveness properties for timed automata. It also shares the
UPPAAL input format, and re-uses the uppPAAL DBM library.

Problem statement. Parallel model checking of liveness properties for timed sys-
tems has been a challenge for several years. While advances were made with distributed
versions of e.g. uppaAL [BehO35]], these were limited to safety properties. Furthermore,
it is unknown how subsumption, the coarsest abstraction, can be used for checking TBA
emptiness.

Contributions. (1) For the first time, we realize parallel LTL model checking of
timed systems using the CNDFs algorithm. (2) We prove that subsumption preserves
several structural state-space properties (Section 10.3), and show how these proper-
ties can be exploited by Nprs and Cnprs (Section 10.4] and [Section 10.5). (3) We
implement Nprs and CNDFs with subsumption in the LTSmin toolset [LPW11a] and
opaAL [Dal+11]]. Finally, (4) our experiments show considerable state-space reductions
by subsumption and good parallel scalability of CnpFs with speedups of up to 40 using
48 cores.

10.2 Preliminaries: Timed Biichi Automata and Ab-
stractions

In the current section, we first recall the formalism of timed Biichi automata (TBA), that
allows modeling of both a real-time system and its liveness requirements. Subsequently,
we introduce finite symbolic semantics using zone abstraction with extrapolation and
subsumption. Finally, we show which properties are known to be preserved under said
abstractions.




10.2.1 Timed Automata and Transition Systems

provides a basic definition of a TBA. It can be extended with features
such as finitely valued variables, and parallel composition to model networks of timed

automata, as done in uppaAL [BDLO4].

Definition 10.1 (Guards). Let G(C) be a conjunction of clock constraints over the set
of clocks ¢ € C, generalized by:

gu=cXin|gAg]|true

where n € Ny is a constant, and <1 € {<,<,=,>,>} is a comparison operator. We
call a guard downwards closed if all < € {<,<,=}.

Definition 10.2 (Timed Biichi Automaton). A timed Biichi automaton (TBA) is a 6-
tuple B= (L,C,F,ly,—,Ic), where

e L is a finite set of locations, typically denoted by ¢, where ly € L is the initial
location, and F C L, is the set of accepting locations,

e C is a finite set of clocks, typically denoted by c,

e > CLxXG(IC)x 2C X L is the (non-deterministic) transition relation. We write
0 R 0 for a transition, where ( is the source and (' the target location, g € G(C)
is a transition guard, R C C is the set of clocks to reset, and

e Ic: L — G(C) is an invariant function, mapping locations to a set of guards. To
simplify the semantics, we require invariants to be downwards-closed.

The states of a TBA involve the notion of clock valuations. A clock valuation is
a function » : C — R>o. We denote all clock valuations over C with V. We need
two operations on clock valuations: o' = v+ & for a delay of § € Rx time units s.t.
Ve eC: o'(c) = v(c)+ 8, and reset o' = o[R] of a set of clocks R C C s.t. o/(c) =0 if
¢ € R, and ¥/(c) = v(c) otherwise. We write v |= g to mean that the clock valuation v
satisfies the clock constraint g.

Definition 10.3 (Transition system semantics of a TBA). The semantics of a TBA B is
defined over the transition system TS5 = (S,,50,=,) s.t.:

1. A state s € S, is a pair: (£,v) with a location ¢ € L, and a clock valuation v.

2. Aninitial state so € S,, s.t. so = (Lo, w), where Ve € C: w(c) =0.



3. =, S, x ({e} URs) X S, is a transition relation with (s,a,s’) €=, denoted
s % §' s.t. there are two types of transitions:

(a) A discrete (instantaneous) transition: ({,v) & (¢',7') if an edge { 8% ('
exists, v =g and v = v[R], and v = I ().

(b) A delay by 8 time units: (£,v) %, (£, v+08)ford eRsoif v+ =1c(¥).

x:=0,y:=0 x>2x:=0,y:=0
y:=0
start —>
y<2 y<2

Figure 10.1: A timed Biichi automaton.

We say a state s € S is accepting, or s € F, when s = ({,...) and £ € F. We write

s 9, & ¢ if there exists a state s” such that s %, 5" and s % s'. We denote an infinite run

in 788 = (S,,s0,=,) as an infinite path 7 = s; %\ & s, %% s5... The runis accepting
if there exist an infinite number of indices i s.t. s; € F. A(n infinite) run’s time lapse is
Time(7) = ¥~ 8. Aninfinite path 7 in 7S5 is time convergent, or Zeno, if Time (1) <
oo, otherwise it is divergent. For example, the TBA in has an infinite run:
(Lo, m) 2 (Lo, ) s ---, that is not accepting, but is non-Zeno. We claim that there is
no accepting non-Zeno run, exemplified by the finite run:

(4o, ) —2>£> (41, 21) gi) (62, ) gﬁ) (41, w) 1—9)—8;}(

Definition 10.4 (A TBA’s language and the emptiness problem). The language accepted
by B, denoted L(B), is defined as the set of non-Zeno accepting runs. The language
emptiness problem for B is to check whether L(B) = 0.

Remark 10.1 (Zenoness). Zenoness is considered a modeling artifact as the behavior
it models cannot occur in any real system, which after all has finite processing speeds.
Therefore, Zeno runs should be excluded from analysis. However, any TBA B can be
syntactically transformed to a strongly non-Zeno B’ [TYBO3|], s.t. L(B) =0iff L(B') =
Q. Therefore, in the following, w.l.o.g., we assume that all TBAs are strongly non-Zeno.

Definition 10.5 (Time-abstracting simulation relation). A time-abstracting simulation
relation R is a binary relation on S, s.t. if s|Rs> then:
o Ifsi & s, then there exists s}, s.t. s &, 55 and s|Rs),.
. !
o Ifs; S 5|, then there exists sy and &' s.t. s, O, s, and s/ Rs).
Ifboth R and R~ are time-abstracting simulation relations, we call R a time-abstracting

bisimulation relation.




10.2.2 Symbolic Abstractions using Zones

A zone is a symbolic representation of an infinite set of clock valuations by means of
a clock constraint. These constraints are conjuncts of simple linear
inequalities on clock values, and thus describe (unbounded) convex polytopes in a |C|-
dimensional plane (e.g. [Figure 10.2). Therefore, zones can be efficiently represented
by Difference Bounded Matrices (DBMs) [Ben02].

Definition 10.6 (Zones). Similar to the guard definition, let Z(C) be the set of clock
constraints over the set of clocks c,cy,cp € C generalized by:

Zui=cxnl|ci—caXn|ZNZ | true | false

where n € Ny is a constant, and <1 € {<,<,>,>} is a comparison operator. We also
use = for equalities, short for the conjunction of < and >.

We write o |= Z if the clock valuation v is included in Z, for the set of clock val-
uations in a zone [Z] = {v | v = Z}, and for zone inclusion Z C Z' iff [Z] C [Z'].
Notice that [false] = 0. Using the fundamental operations below, which are detailed
in [Ben02||, we define the zone semantics over simulation graphs in
Most importantly, these operations are implementable in O(n?) or O(n?) and closed
wrt. Z.
clock delay: [Z1] ={v+6|06 € Rxg,v € [Z]},
clock reset: [|Z|R]] = {v|R]|v € [Z]}, and
constraining: [ZNZ'] = [Z]N[Z'].

Definition 10.7 (Zone semantics). The semantics of a TBA B = (L,C,F,{y,—,
Ic) under the zone abstraction is a simulation graph: SG(B) = (Sz,s0,=z) s.t.:

1. Sz consists of pairs (£,Z) where £ € L, and Z € Z is a zone.

Figure 10.2: A graphical representation of a zone over 2 clocks: 0 <x—y < 2.



2. so € Sz is an initial state (Lo, Zy T A Ic(€o)) with Zo = Neecc = 0.

3. =z is the symbolic transition function using zones, s.t. (s,s') €=z, denoted
s= s withs = ({,Z) and s' = ({',.Z'), ifan edge { &K 0’ exists, and Z \g +# false,
Z'=(((ZNQ)IR]) DA Ic(£') and Z' # false.

Any simulation graph is a discrete graph, hence cycles and lassos are defined in the
standard way. We write s = s iff there is a non-empty path in SG(B) from s to ',
or s =* ¢ if the path can be empty. An infinite run in SG() is an infinite sequence
of states T = s157..., s.t. s5; = s;41 for all i > 1. It is accepting if it contains infinitely
many accepting states. If SG(B) is finite, any infinite path from sy defines a lasso:
so=>%s=Ts.

Definition 10.8 (A TBA’s language under Zone Semantics). The language accepted
by a TBA B under the zone semantics, denoted L(SG(B)), is the set of infinite runs
T =80S152 ... S.t. there exists an infinite set of indices s.t. s; € F.

Because there are infinitely many zones, the state space of SG(B) may also be in-
finite. To bound the number of zones, extrapolation methods combine all zones which
a given TBA B cannot distinguish. For example, k-extrapolation finds the largest upper
bound & in the guards and invariants of B, and extrapolates all bounds in the zones Z
that exceed this value, while LU-extrapolation uses both the maximal lower bound /
and the maximal upper bound u [Beh+06]. Extrapolation can be refined on a per-clock
basis [Beh+06]], and on a per-location basis.

Definition 10.9. An abstraction over a simulation graph SG(B) = (Sz,s0,=z) is a
mapping & : Sz — Sz s.t. if a((¢,2)) = (0, Z") then { =V and Z C Z'.
If the image of an abstraction « is finite, we call it a finite abstraction.

Definition 10.10. Abstraction o over zone transition system SG(B) = (Sz,s0,=z)
induces a zone transition system SGy(B) = (Sq, &t(s0),= o) where:

o Sq={als)|se Sz} is the set of states, s.t. S C Sz,
o a(sy) is the initial state, and
o (s5,5) €=q iff (s,5") €=z and s’ = a(s"), is the transition relation.

We call an abstraction o an extrapolation if there exists a simulation relation R s.t.
ifa((¢,Z2)) = (¢,Z') then for all o' € Z' there exist a v € Z s.t. o’Rv [Li09]. This means
extrapolations do not introduce behavior that the un-extrapolated system cannot simu-
late. The abstraction defined by k-extrapolation is denoted by oy, while the abstraction
defined by LU-extrapolation is called oy,. Hence, o and oy, induce finite simulation
graphs, written SGi(B) and SGy,(B).




10.2.3 Subsumption Abstraction

While SGy(B) and SGy,(B) are finite, their size is still exponential in the number of
clocks. Therefore, we turn to the coarser inclusion/ subsumption abstraction of [DT9S],
hereafter denoted subsumption abstraction. We extend the notion of subsumption to
states: a state s = (¢,Z) € Sz is subsumed by another s' = (¢',Z'), denoted s C s’, when
(=0 andZCZ. Let R(SG(B)) = {s | so =" s} denote the set of reachable states in
SG(B).

Zz) and (K,Zl) = (f/,Zi)

Proposition 10.1 (C is a simulation relation). If (¢,Z;) C (¢,
,Zb).

then there exists Z s.t. ((,Zy) = (¢',Z}) and (¢',Z}) C (¢

Proof. By the definition of C, and the fact that = is monotone w.r.t C of zones. O

Definition 10.11 (Subsumption abstraction [DT98|). A subsumption abstraction o
over a zone transition system SG(B) = (Sz,s0,= z ) is a total function ac : R(SG(B)) —
R(SG(B)) s.t. s T o=(s)

Note the subsumption abstraction is defined only over the reachable state space,
and is not an extrapolation, because it might introduce extra transitions that the unab-
stracted system cannot simulate. Typically ¢ is constructed on-the-fly during analysis,
only abstracting to states that are already found to be reachable. This makes its perfor-
mance depend heavily on the search order, as finding “large” states quickly can make
the abstraction coarser [Dal+12].

fini
SGE nite

(0 O
SG
TS,

preserves Biichi
preserves loc. reach.

Figure 10.3: Abstractions.



10.2.4 Property Preservation under Abstractions

We now consider the preservation by the abstractions above of the property of location
reachability (a location ¢ is reachable iff so =* (¢,...)) and that of Biichi emptiness.

Proposition 10.2. For any of the abstractions o.: oy [[DT98|], oy, [Beh+006)], o o
oc [DT98)], and oy, o ac [|Beh+06|], it holds that:
¢ is reachable in TS® <= ( is reachable in SGo(B)

Proposition 10.3. For any finite extrapolation [LiO9|] &, e.g. the abstractions oy, [[Tri09]
and oy, [Li09] it holds that:
LB)=0 < L(SG«(B))=10

From hereon we will denote any finite extrapolation as ¢, and the associated sim-
ulation graph SGy;,(B). To denote that this graph can be generated on-the-fly [VWS86;
BKO8;|DT98]|, we use a NExT-STATE(ss) function which returns the set of successor states
fors: {s' € Spn | s = 5'}.

As a result 0 we can focus on finding accepting runs in SGg,(B).
Because it is finite, any such run is represented by a lasso: so = s =" s. Tripakis [Tri09]
poses the question of whether o can be used to check Biichi emptiness. We will in-
vestigate this further in the next section.

10.3 Preservation of Buichi Emptiness under Sub-
sumption
The current section, investigates what properties are preserved by a subsumption ab-

straction o, when applied on a finite simulation graph obtained by an extrapolation,
Olfin, in the following, denoted as SG (B) = (SGnoc (B)).

Proposition 10.4. For all abstractions a, s € F < o(s) € F (by|Definition 10.9).

Proposition 10.5. An oc abstraction is safe w.r.t. Biichi emptiness:

L(B)#0 = L(SGc(B)) # 0

Proof. If L(B) # 0, there must be an infinite accepting path 7. This path is inscribed [Tri09)]
in SGf,,(B), and because C is a simulation relation a similar path exists in SG-(B). O

shows that subsumption abstraction preserves Biichi emptiness in

one direction. Unfortunately, an accepting cycle in SG(B) is not always reflected in
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Figure 10.4: The state space SGc(B) of the model in[Figure 10.1|with ¢, € F contains 4
states (shown on the left): so, 51 = (¢1,Z1), s2 = (¢2,Z>) and s3 = (¢1,Z3). The graphical
representation of the zones Z;—Z3 (right) reveals that Z3 C Z; and hence s3 C s1. As
53 C s1 and both are reachable, a subsumption abstraction is allowed to map oz (s3) = s1,
introducing a cycle s; = s = s1 in SG(B).

SGiin(B), as[Figure 10.4illustrates. The figure visualizes SG¢ (1) by drawing subsumed
states inside subsuming states (e.g. s3 C s1).

However, subsumption introduces strong properties on paths and cycles to which we
devote the rest of the current section. In subsequent sections, we exploit these properties
to improve algorithms that implement the TBA emptiness check.

Lemma 10.1 (Accepting cycles under O). If SGj,(B) contains states s,s' s.t. s leads
to an accepting cycle and s C s', then s' leads to an accepting cycle.

Proof. We have that s =* t = ¢, and because C is a simulation relation we have the
existence of a state x s.t. t C x:

s/ :>* t/ = = X
Ll Ll Ll Ul
s o=t = = ¢

From x, we again have a similar path, to some x’. This sequence will eventually repeat
some x”, because SGy, (B) is finite. It follows that all states in x”" =" x”" subsume states

int =7 ¢, hence the former cycle is also accepting (Proposition 10.4)). O

Lemma 10.2 (Paths under O). If SGg,(B) contains a path s =7 s’ containing an ac-
cepting state and s C §', then s leads to an accepting cycle.

Proof. Because C is a simulation relation we have that s =% 5" and s C s’ implies the
existence of some ¢ such that s’ = ¢ and s’ C ¢. From ¢, we again obtain a similar path
to some ', s.t. + C t'. Because SGj,(B) is finite, the sequence of ¢'s will eventually
repeat some element x, s.t. x =1 .- =T x,



s =+ ¢t =+ ¢/ =+ =+ P =+ x
Ll L LI LI Ll Il
s =t ¥ =t t =7t =T x =t X

This gives us the lasso s =* x =T x. It also follows that all states in x =" x subsume

states in s = 5, hence the former cycle is accepting (Proposition 10.4)). O

10.4 Timed Nested Depth-First Search with Sub-
sumption

In the current section, we extend the classic linear-time Nprs [Cou+92; SE05] algo-
rithm to exploit subsumption. The algorithm detects accepting cycles, the absence of
which implies Biichi emptiness. It is correct for the graph SG,(B) according to
In the following, with soundness, we mean that when NDFs reports a cycle,
indeed an accepting cycle exists in the graph, while completeness indicates that Nprs
always reports an accepting cycle if the graph contains one.

The Nprs algorithm in[Algorithm T0.1|consists of an outer DFS (dfsBlue) that sorts
accepting states s in DFS postorder. And an inner DFS (dfsRed) that searches for cycles
over each s, called the seed. States are maintained in 3 color sets:

1. Blue, states explored by dfsBlue,

2. Cyan, states on the stack of dfsBlue (visited but not yet explored), which are used
by dfsRed to close cycles over s early at[Cine[§| [SE03], and

3. Red, visited by dfsRed

Algorithm 10.1 Nprs

1: procedure NDFS 10: procedure dfsBlue(s)

2 Cyan := Blue := Red := 0 11: Cyan := CyanU {s}

3 dfsBlue(so) 12:  for all 7 in NEXT-STATE(s) dO

4 report no cycle 13: if ¢ € Blue Nt & Cyan then
s: procedure dfsRed(s) 14: dfsBlue(r)

6 Red := Red U {s} 15: if s € 7 then

7 for all 7 in NExT-STATE(S) do 16: dfsRed(s)

8 if € Cyan then report cycle 7. Blue := Blue U {s}

9 if 1 & Red then dfsRed (1) 18: Cyan := Cyan\ {s}
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[ATgorithm T0.T|maintains a few strong invariants, which are already mentioned in
SEO03], but for which we include a formal proof in[Section B.T}

10: At[Cine[T3]all red states are blue. (see [Corollary B.3).
I1: The only accepting state visited by dfsRed is the seed. (see[Corollary B.4).

12: Outside of dfsRed, accepting cycles are not reachable from red states. (see[Corol]
lary B.5).

I3: A sufficient post-condition for dfsRed(s) is that all reachable states from s are

included in Red and no cyan state is reachable from it. (see[Corollary B.6).

We now try to employ subsumption on the different colors to prune the searches, even
though we cannot use it on all colors as SG(5) introduces additional cycles as
showed. To express subsumption checks on sets we write s C S, meaning
3’ €S: sCs'. And SC s, meaning 35’ € S: s’ C 5. At several places in
we might apply subsumption, leading to the following options:

1. On cyan for cycle detection:

(a) 1 C Cyan at[Cine[§] or

(b) Cyan Ct at[Cine[§]
2. On dfsBlue, by replacing t ¢ Blue At ¢ Cyan at[Cine[13| with ¢ Z Blue U Cyan.
3. On the blue set (explored states), by replacing r & Blue at|[Line[I3|with 7 Z Blue.
4. On dfsRed, by replacing t ¢ Red at[Cine[9 with 7 Z Red.

Subsumption on cyan for cycle detection as in[[tem Tajmakes the algorithm unsound:
cycles in SGc (B) are not always reflected in SGy,(B) (Figure 10.4). There is also no

Figure 10.5: Counter example to subsumption on Blue and Cyan (Item 2).
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10.4 Timed Nested Depth-First Search with Subsumption

(a) dfsBlue(sy) (b) dfsBlue(s3) (c) dfsRed from s3

Figure 10.6: Counter example to subsumption on Blue

hope of “unwinding” the algorithm upon detecting an accepting cycle that does not exist
in the underlying SGy,(BB) without losing its linear-time complexity, as the number of
cycles can be exponential in the size of SG(B).

If, on the other hand, we prune the blue search as in[ltem 2] the algorithm becomes
incomplete. shows a run of the modified Nprs on an SGg,(B) with cycle
s3 = sp = 53. The dfsBlue backtracked over s, as s3 C 51 and s € Cyan. The dfsRed
now launched from sy, will however continue to visit s3, while missing the cycle as s, is
not cyan. We also observe that I1 is violated, indicating that the postorder on accepting
states (s3 before s1) is lost.

It is tempting therefore to use subsumption on blue only, as in However,
shows an “animation” of a run with the modified Nprs which is incomplete.
Here state s is first backtracked in the blue search as all successors are cyan (left). Then
state s1 is marked blue; The blue search backtracks to s,, proceeds to s3 and backtracks
because it finds s’l C 51 € Blue (middle). Then a red search is started from s3, which
subsumes the cyan stack (s2) and visits accepting state s4, violating I1 and missing the
accepting cycle s4 = 55 = 54.

A viable option however is to use inverse subsumption on cyan as in[[tem 1b] Ac-
cording to[Cemma T0.] a state that subsumes a state on the cyan stack leads to a cycle.
And as the only goal of the red search is to find a cyan state (to close an accepting cycle
over the seed), it does not rely on DFS (I3). Thus we may as well use subsumption
in the red search as in[ltem 4] By definition (Definition 10.11), SGc(B) contains a
“larger” state for all reachable states in SGj,(B8). So in combination with this
is sufficient to find all accepting cycles.

The strong invariant (I2) states accepting cycles are not reachable from red states, so
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Algorithm 10.2 Nprs with subsumption on red, cycle detection, and red in dfsBlue.

1: procedure NDFs() 10: procedure dfsBlue(s)

2 Cyan := Blue := Red := 0 11: Cyan := CyanU{s}

3: dfsBlue(so) 12: for all 7 in NEXT-STATE(s) do

4: report no cycle 13: if (t € BlueU Cyan A\t IZ Red)
5. procedure dfsRed(s) 14: then dfsBlue(t)

6. Red :=RedU{s} 15.  if s € F then

7: for all 7 in NEXT-STATE(s) do 16: dfsRed(s)

8: if Cyan C t then report cycle .. Blue := Blue U {s}

9: if 7 [Z Red then dfsRed(r) 18: Cyan := Cyan\ {s}

red states can prune the blue search. We can strengthen the condition onto t ¢
Blue U Cyan U Red. However, this is of no use since by (I10), Red C Blue. Luckily, even
states subsumed by red do not lead to accepting cycles (contraposition of[Lemma T0.T),
s0 we can use subsumption again: ¢t ¢ Blue U Cyan A\t [Z Red. The benefit of this can be
illustrated using Once dfsBlue backtracks over s, we have s1,s3,53 € Red
by dfsRed at Any hypothetical other path from s to a state subsumed by these
red states can be ignored.

shows a version of Nprs with all correct improvements. Notice that

12 and I3 are sufficient to conclude correctness of these modifications.

10.5 Multi-Core cndfs with Subsumption

Cnors, from|[Chapter 7] is a parallel algorithm for checking Biichi emptiness. By[Propo
itis correct for SGy,. In the current section, we extend CNDFs with subsump-

tion, in a similar way as we have done for the sequential NpFs in the previous section.

In CNDFs without underlined parts), each worker thread i runs a
seemingly independent dfsBlue; and dfsRed;, with a local stack color Cyan;, and its own
random successor ordering (indicated by the subscript i of the NEXT-STATE function).
However, the workers assist each other by sharing the colors Blue and Red globally,
thus pruning each other’s search space.

The main problem that CNDFs has to solve is the loss of postorder on the accept-
ing states due to the shared blue color (similar to the effects of as illustrated
in[Figure 10.6). In the previous section, we have seen that a loss of postorder may cause
dfsRed to visit non-seed accepting states, i.e. 11 is violated. CnDFs demonstrates that
repairing such a dangerous situation is sufficient to preserve correctness (see[Chapter 7)).



To detect a dangerous situation, CNDFs collects states visited by dfsRed; in a set R;
at After completion of dfsRed;, the algorithm checks R; for non-seed accepting
states at [Cine[22] By waiting for these states to become red, the dangerous situation
is resolved as the blue state that caused the situation was always placed by some other
worker, which will eventually continue as shown by [Proposition 7.3] Once the situation
is detected to be resolved, all states from the local R; are added to Red at[Cine[23]

CnpFs maintains similar invariants as Nprs (proved in[Chapter 7):

12’ Red states do not lead to accepting cycles (see[Lemma /.1|and [Proposition 7.1).

13’ After dfsRed,(s) states reachable from s are red or in R; (see[Lemma 7.2)).

Because these invariants are as strong or stronger than I2 and I3, we can use subsumption
in a similar way as for Nprs. [Algorithm 10.3|underlines the changes to algorithm w.r.t.
[Algorithm 7.2} in |[Chapter 7| We additionally have to extend the waiting procedure to
include subsumption at because the use of subsumption in dfsRed; can cause
other workers to find “larger” states.

In the next section, we benchmark [Algorithm 10.3|on timed models. The algorithm
inherits from CNDFs the property that its runtime is linear in the size of the input graph
N. However, in the worst case, all workers may visit the same states. Therefore, the
complexity of the amount of work that the algorithm performs (or the amount of power
it consumes) equals N x P, where P is the number of processors used. The random-
ized successor function NEXT-STATE; however ensures that this does not happen for most
practical inputs. Experiments on over 300 examples confirmed this (see [Section 7.4)),
making CNDFs the current state-of-the-art parallel LTL model checking algorithm.

Algorithm 10.3 CnpFs with subsumption

1: procedure cNDFs(P) 13: procedure dfsBlue;(s)

2: Blue := Red :=0 14: Cyan; := Cyan; U {s}

3: foralliin 1..P do Cyan; :==0 15 for all 7 in NEXT-STATE; () do

4: dfsBlue(so)||..||dfsBluep(so) 16 if # & Cyan; UBlue At Z Red then
5: report no cycle 17: dfsBlue,(t)

6: procedure dfsRed;(s) 18: Blue := BlueU {s}

7: Ri:=R;U{s} 19: if s € 7 then

8: for all 7 in NEXT-STATE;(s) do  20: Ri=0

9: if Cyan C t then 21: dfsRed,(s)
10: report cycle 22: await Vs’ € R;NF\ {s}: s C Red
11 if 1 ¢ R; A\t Z Red then 23 forall s’ in R; do Red := Red Us’'
12: dfsRed;(t) 24:; Cyan; := Cyan; \ {s}




10.6 Experimental Evaluation

To evaluate the performance of the proposed algorithms experimentally, we imple-
mented CnDFs without (as in and with subsumption in
LTSMIN z_dﬂ_ﬂ'l The opaaL [Dal+11] too@ functions as a frontend for upPAAL mod-
els. Previously, we demonstrated scalable multi-core reachability for timed automata (see

10.6.1 Experimental Setup

We benchmarkem on a 48-core machine (a four-way AMD Opteron™ 6168) with a
varying number of threads, averaging results over 5 repetitions. We consider the fol-
lowing models and LTL properties:

c sma@is a protocol for Carrier Sense, Multiple-Access with Collision Detection with
10 nodes. We verify the property that on collisions, eventually the bus will be
active again: [J ( (PO=bus_collisionl) = { (PO=bus_active)).

fischer-1/ 2@] implements a mutual exclusion protocol with 10 nodes; a canoni-
cal benchmark for timed automata. As in [Li09]], we use the property (1):
= ((O0k=1) Vv (O0k=0) ), where k is the number of processes in their criti-
cal section. We also add a weak fairness property (2): O ( (P_l=req) =
(OP_1=cs) ) : processes requesting infinitely often will eventually be served.

£ddil®4 models a token ring system as described in [BTY97|], where a network of
10 stations are organised in a ring and can hand back the token in a synchronous
or asynchronous fashion. We verify the property from [BTY97|] that every station
will eventually send asynchronous messages: [J (¢ (ST1=station_z_sync)).

train—gatem models a railway interlocking, with 10 trains. Trains drive onto the
interconnect until detected by sensors. There they wait until receiving a signal
for safe crossing. The property prescribes that each approaching train eventually
should be serviced: [0 (Train_1=Appr — ({Train_l=Cross)).

The following command-line was used to start the LTSMIN tool:

opaal2lts-mc --strategy=[A] --ltl-semantics=textbook --ItI=[f] -s28 --threads=[P] -u[0,1] [m].

This runs algorithm A on the cross product of the model m with the Biichi automaton

of formula f. It uses a fixed hash table of size 228 and P threads, and either subsumption

(-u1) or not (-u0). The option Itl-semantics selects textbook LTL semantics as defined

10-1 Available as open source at: http://fmt .cs.utwente.nl/tools/ltsmin

102 Available as open source at: http://opaal-modelchecker.com

103 All results are available at: http://fmt.cs.utwente.nl/tools/ltsmin/cav-2013
104Fromhttp://www.it.uu.se/research/group/darts/uppaal/benchmarks/
105 A5 distributed with UPPAAL.
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in [BKOS} Ch. 4]. To investigate the overhead of CNDFs, we also run the multi-core
algorithms for plain reachability on this cross product, even though this does not make
sense from a model checking perspective. To compare effects of the search order on
subsumption, we use both prs and BFs.

Note finally, that we are only interested here in full verification, i.e. in LTL proper-
ties that are correct w.r.t the system under verification. This is the hardest case as the
algorithm has to explore the full simulation graph. To test their on-the-fly nature, we
also tried a few incorrect LTL formula for the above models, to which the algorithms all
delivered counterexamples within a second. But with parallelism this happens almost

instantly (see|Section 7.4.4)).

10.6.2 Implementation

LTSMmin defines a NEXT-STATE function as part of its piNs interface for language-independent
symbolic/parallel model checking [BPW10]. In[Chapter 9] we extended pins with sub-
sumption. opAAL is used to parse the uppaaL models and generate C code that imple-
ments PINs. The generated code uses the uppaaL DBM library to implement the sim-
ulation graph semantics under LU-extrapolated zones. The LTL cross product [BKOS|]

is calculated by LTSwmin.

LTSmiIN’s multi-core tool [LPW11al] stores states in one lockless hash/tree table
in shared memory (see [Part II). For timed systems, this table is used to store explicit
state parts, i.e. the locations and state variables [BDLO4]. The DBMs representing
zones, here referred to as the symbolic state parts, are stored in a separate lockless
hash table, while a lockless multimap structure efficiently stores full states, by linking
multiple symbolic to a single explicit state part (see [Chapter 9). Global color sets of
Cn~DFs (Blue and Red) are encoded with extra bits in the multimap, while local colors
are maintained in local tables to reduce contention to a minimum.

Because the proof of the original CNpFs algorithm assumes that each lines in [Al{
is executed atomically, we to implement the C operation as an atomic
operation. To this end, we lock the multimap using a fine-grained spinlock as discussed
in Because this implementation locks individual explicit state parts, it
generally allows for enough parallelism, unless there are very few explicit state parts
compared to symbolic state parts.

10.6.3 Hypothesis

Cnprs for untimed model checking scaled mostly linearly. In the timed automata set-
ting, several parameters could change this picture. In the first place, the computational
intensity increases, because the DBM operations use many calculations. In modern



multi-core computers, this feature improves scalability, because it more closely matches
the machine’s high frequency/bandwidth ratio (see [Chapter 2)). On the other hand, the
lock granularity increases since a single lock now governs multiple DBMs stored in
the multimap as described in the previous section. Nonetheless, for multi-core timed
reachability, previous experiments showed almost linear scalability (see [Section 9.7)),
even when using other model checkers (UPPAAL) as a base line. On the other hand, the
CnpFs algorithm requires more queries on the multimap structure to distinguish the
different color sets.

Subsumption probably improves the absolute performance of Cnprs. We expect
that models with many clocks and constraints exhibit a better reduction than others.
Moreover, it is known [BehO35] that the reduction due to subsumption depends strongly
on the exploration order: BFs typically results in better reductions than prs, since
“large” states are encountered later. CnDFs might share this disadvantage with DFs.
However, as shown in[Chapter 9] subsumption with random parallel prs performs much
better than sequential pFs, which could be beneficial for the scalability of CNDFs. So
it is really hard to predict the relative performance and scalability of these algorithms,
and the effects of subsumption.

10.6.4 Experimental Results without Subsumption

We first compare the algorithms BFs, prs (parallel reachability) and CnDFs (accepting
cycles) without subsumption. shows their sequential (P = 1) and parallel
(P = 48) runtimes (7"). Note that sequential CNDFs is just Nprs. We show the number
of explicit state parts (|L|), full states (|R|), transitions (|]=|), and also the number of
states visited in CNpFs (|V|). These numbers confirm the findings reported previously
for CnpFs applied to untimed systems: The sequential runtimes (P = 1) are very similar,
indicating little overhead in CnDFs. For the parallel runs (P = 48), however, the number
of states visited by CnpFs (|V]) increases due to work duplication.

To further investigate the scalability of the timed CnpFs algorithm, we plot the
speedups in Vertical bars represent the (mostly negligible) standard de-
viation over the five benchmarks. Three benchmarks exhibit linear scalability, while
train-gate and fddi show a sublinear, yet still positive, trend. For train-gate, we suspect
that this is caused by the structure of the state space. Because fddi has only 119 explicit
state parts, we attribute the poor scalability to lock contention, harming more with a
growing number of workers.



10.6 Experimental Evaluation

Table 10.1: Runtimes (sec) and states counts without subsumption.

Model ‘ P ‘ L] [R IV cnars [= s ‘ Tors  Taps Tendss
csma 1 135449 438005 438005 1016428 | 26.1 262 27.8
csma 48 135449 438005 453658 1016428 1.0 0.9 0.9
fddi 1 119 179515 179515 314684 | 263 266 342
fddi 48 119 179515 566093 314684 1.6 0.7 2.7

fischer-1 1 521996 4987796 4987796 19481530 | 1959 196.7 212.2
fischer-1 | 48 521996 4987796 5190490 19481530 4.8 4.6 5.1
fischer-2 1 358901 3345866 3345866 10426444 | 135.8 136.5 1455
fischer-2 | 48 358901 3345866 3541373 10426444 3.4 33 3.7
train-gate | 1 | 119989268 119989268 119989268 177201017 | 1608 1621 1724
train-gate | 48 | 119989268 119989268 319766765 177201017 | 349 454 1458
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Figure 10.7: Speedups in LTSmiN/opaaL
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10.6.5 Subsumption

[Table 10.2]shows the experimental data for Brs, prs and CNDFs with subsumption
[gorithm 10.3). The number of explicit state parts |L| is stable, since reachability of
locations is preserved under subsumption (Proposition 10.2). However, the achieved
reduction of full states depends on the search order, so we now report |R| per algo-
rithm, as a percentage of the original numbers.

We confirm [BehO5] that subsumption works best for Brs reachability, with even
more than 30-fold reduction for fddi, but none for fischer (cf. column |R|y). For these
benchmarks, the reduction is correlated to the ratio X = |R|/|L|; e.g. X a2 1500 for fddi
and X = 10 for fischer. Subsumption is much less effective with sequential prs, but
parallel prs improves it slightly (cf. column |R|4).

CnpFs benefits considerably from subsumption, but less so than Brs: we observe
around 2-fold reduction for fddi, fischer and csma (cf. column |R|cuqp). Surprisingly,
the reduction for parallel runs of CNDFs is not better than for sequential runs. One
disadvantage of CNDFs compared to BFs is that only red states attribute to subsumption
reduction. Probably some “large” states are never colored red. We measured that for
all benchmark models, 20%-50% of all reachable states are colored red (except for
fischer-2, which has no red states).

Subsumption decreases the runtimes for reachability: a lot for Brs, and still con-
siderably for prs, both in the sequential case and the parallel case, up to 48 workers.
However, subsumption is less beneficial for the running time of CNDFs (it might even
increase), but the speedup remains unaffected.

Table 10.2: Runtimes and states counts with subsumption (in % relative to[Table 10.1).

Model ‘P ‘ ‘R‘bfs |R|dfs |R|cndfs |V|Cndfs |$ ‘bfs‘ bes Tdfs Tcndfs

csma 1| 487 88.9 58.3 94.7 412 | 413 903 952
csma 48 | 487 715 58.3 93.6 412 | 645 853 978
fddi 1 3.1 34 50.8 53.1 34 4.3 47 1323
fddi 48 3.1 24 50.8 80.1 34| 510 195 121.0

fischer-1 1 179  72.4 55.2 91.9 270 | 256 787 973
fischer-1 | 48 179  71.1 552 95.9 270 | 33.1 79.6 103.0
fischer-2 1 18.6  68.5 71.5 95.8 28771 27.0 753 989
fischer-2 | 48 18.6  62.7 71.5 95.8 287 | 374 725 983
train-gate | 1| 100.0 100.0 100.0  100.0  100.0 | 100.6 100.6 104.3
train-gate | 48 | 100.0 100.0 100.0  100.0  100.0 | 101.7 83.5 83.1




10.7 Conclusions

We implemented the first parallel model checking algorithm for liveness properties on
timed systems. We also contributed to solving the open problem [Tri09] to use in-
clusion abstraction for liveness properties. Experimentally, we established that these
techniques have their own merits: models with sufficiently many discrete states yield
great speedups of up to 40 on a 48 core machine. Models with more symbolic states
can benefit from abstraction, with 2-fold state-space reductions in several examples.

There is however also room for improvement: As the speedups correlate negatively
with the ratio of symbolic states in the state space X, we can conclude that the atomic
implementation of the T (see [Section 10.6.2)), in fact does constitute a bottleneck for
the parallelism. The use of non-blocking algorithms, such as those proposed in
could further improve speedups. Finally, subsumption might be exploitable
in still different ways for liveness checking, possibly by employing other algorithms
such as Owcry.
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Reflections






Additional Experimental Evaluation

11.1 Introduction

The current chapter provides stronger experimental evidence for the scalability of the
multi-core solutions that we proposed in the current thesis.

The data structures and algorithms in the previous parts have all been rigorously
benchmarked. Most of these benchmarks were however performed on a 16-core ma-
chine using DVE models from the BEEm database [Pel07]]. While this provides already
good evidence for scalability, in the current chapter, we still improve on it by using
real-world models written for the state-of-the-art spin model checker [Hol97a; Hol11]].
Moreover, we also transition from the 16-core machine to a 48-core machine. The in-
crease of the parallelism from 16 cores to 48 cores allows us to evaluate our earlier
hypothesis that the scalability will be maintained for larger machines (Section 2.5]).

To this end, we implemented a frontend for PRoMELA models for the language-
independent model checker LTSmin [LPW11a; |BL13a; BPW10]. This frontend is
called SIS, and partly reuses the parser and interpreter from SpinJa [JR10], which is
basically a reimplementation of spin in Java. The SpinS frontend also performs some
basic static analysis to provide LTSmin with the dependency information required for
partial-order reduction [Laa+13a].

SpPINS generates C code from the pPROMELA models to enable high-performance
model checking with similar performance to spiN. This needs to be mentioned, be-
cause if a virtual-machine or scripting language would have been used, the base case
would experience a slowdown of a factor 4-11 [JR10], as a consequence the obtained
speedups reveal little concrete about an algorithm’s scalability.



The compact hash table from [Chapter 4]is not benchmarked, as the states of many
input models are too large to fit in the table cells. Instead, we present benchmarks with
the compact tree structure from|[Section 4.4] These confirm that the compact tree scales
well and also delivers the optimal compression of around 4 byte per state for the models
considered here.

The following sections will detail experiments that compare our multi-core reach-
ability and multi-core LTL algorithms with similar algorithms in spiN. We first show
that the performance of LTSMIN and SpINS is indeed on par with spiN, this establishes a
valid base-case for comparing the scalability. We then investigate the scalability. Last,
we study the state compression obtained for PRoMELA models with both the tree and the
compact tree.

11.2 Experimental Setup

To compare the performance of PRoMELA model checkers, we performed benchmarks
with spIN 6.2.1 [Hol12|] and LTSMIN 2. [LPW11a;BL13a; BPW10] on a 48-core
machine (a four-way AMD Opteron™ 6168). We also include some BEEm models [Pel07]]
to allow comparison with DIVINE 2.5.2 [Bar+10] (these models are written in the DVE
language and have been translated to PROMELA). We show here a representative selec-
tion

For high performance in spin, we compiled models with parallel BFS [Hol12[: -03
—DNOBOUNDCHECK -DSAFETY -DNOREDUCE -DBEFS_MAXPROCS=48
—-DBFS_PAR. By default, this enables a lossy hash compaction (hc) state storage, hence
we also compiled using ~-DNO_HC. D1VINE is configured as described in[Chapter 2] In
LTSmin, we used a hash table, a tree table and a cleary-tree (all non-lossy). All experi-
ments use a fixed table size of 228, The corresponding command line is: prom21ts-mc
--threads=<N> --state=<cleary-tree/tree/table> -s28
—-—-strategy=<strategy> <model>. Where the strategy is either a reachability
algorithm. e.g. BFS-like search (bfs), DFS-like search (dfs) or strict BFS (sbfs),
or a liveness algorithm such as Cnprs (cndfs). In the latter case, the additional LTL
property needs to be supplied with ——1t1=<formula>. We report here only on the
reachability experiments with BFS-like search: The other strategies result in similar
performance [LPW1l1al]. To accommodate a master thread, spiNn and D1VINE are lim-
ited to 47 threads.

1.1The LTSMIN website: http://fmt .cs.utwente.nl/tools/ltsmin
112 For complete results see http: //fmt .cs.utwente.nl/tools/ltsmin/performance
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11.3 Performance and Scalability of Reachability

shows the state counts and sequential runtimes of the different tools. Unfor-
tunately, the parallel BFS algorithm of spiN generates more states than it should, since
its sequential DFS algorithm generates the same amount of states as LTSmIN with SPINS
does (also included in the table). This is indicative of a bug in the parallel algorithm.
A perfect comparison between the parallel tools is thus not always possible. Still we
can draw conclusions from the differences of the sequential runtimes. The table namely
shows that sequentially the runtimes of LTSmIN are competitive to those of spiN, which

Table 11.1: Number of states and runtimes of spin’s parallel BFS (1 core) and sequential
DFS vs LTSMIN/SPINS (1 core). Deviating state counts are in bold.

spiN ParBFS (hc) |spin ParBFS (nohc) SPIN LTSMIN
States |S| Runtime |States |S| Runtime |States |S| Runtime |States |S| Runtime

GARP1 1.6e8  458.0 1.6e8 820.0 4.8¢7 377.1 4.8¢7 1758
Peterson4 9.5¢6 17.5 9.5¢6 27.1 1.3e7 23.6 1.3e7 22.3
I-Protocol2 4.0e7 77.2 4.0e7 179.0 1.4e7 28.4 1.4e7 30.0
Anderson.6 1.8e7 73.9 1.8e7 148.0 1.8e7 67.7 1.8e7 47.1
At.5 3.2e7 101.0 3.2e7 205.0 3.2¢e7 96.4 3.2e7 71.0
Bakery.7 2.8¢7 6.3 2.8¢e7 86.4 2.9¢7 55.1 2.9¢7 60.0

Table 11.2: Runtimes of sequential and parallel runs in on 48 cores in spiN (with and
without hash compaction), DIVINE and LTSMiIN (table/tree/Cleary-tree). The fastest
sequential and concurrent runtimes are shown in bold.

spiN ParBFS DiVINE LTSmin
hc nohc table tree Cleary
1 47 1 47 1 47 1 48 1 48 1 48

GARP1 | 458.0 43.4 820.0 2950| n/a n/a| 1879 53 1758 4.6 1969 5.1
Peterson4 | 17.5 2.6 27.1 183 | n/a n/a| 296 12 223 0.8 269 09
I-Protocol2 | 77.2 30.0 179.0 249.0| n/a n/a| 43.1 1.8 30.0 1.0 319 1.1
Anderson.6 | 739 260 148.0 188.0 275 80| 528 19 471 15 577 1.7
At.5 | 101.0 28.0 205.0 239.0 (39.8 10.5| 66.0 2.2 71.0 2.0 848 24
Bakery.7 | 59.8 63 864 384|322 90| 520 1.8 600 17 694 20
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also holds for spiN’s parallel BFS algorithm for those models that still have comparable
State counts.

In the following scalability experiments, we will limit our investigation to relative
scalability, i.e. we use the sequential runtime of the same tool (not the fastest tool) to
calculate speedups. This allows us to disregard the slight differences in the number if
states. In fact, for the scalability this is even an advantage for spIN, because more states
means that more work is available for parallelization and in general results in better

speedups. The absolute runtimes are also given in[Table 11.2]

[Figure 11.1] [Figure 11.2|and [Figure 11.3|show the obtained speedups with spin and
LTSMmin for models only available in PRoMELA source. [Figure 11.4] [Figure 11.5|and
show the obtained speedups with DIVINE, spin and LTSmiN for DVE mod-
els that were translated to PRoMELA [[PelO7]] (the state count remains the same for these
translated versions). The speedups in LTSMIN clearly dominate in the figures. Although
not entirely linear, the speedup still increases up to 48 cores. Except for
where we determined that the load balancer sometimes failed to keep up, as witnessed
by an uneven workload distribution. We expect that a modern, asynchronous load bal-
ancer implementation, as suggested in solves this problem. The 48-core
runtimes show that LTSmiN’s multi-core algorithms are a good addition for PROMELA
model checking. Furthermore, we can see that (Cleary-)tree compression introduces
little or no overhead.

11.4 Performance and Scalability of LTL Checking

[Figure 11.7] and [Figure 11.8| show speedups of two models obtained with DIVINE’s
owcrty algorithm, spiN’s Piggyback (PB) algorithm [[Holl2] (with hash compaction)
and LTSMIN’s CNDFs (see algorithm (with hash table). CNDFs shows the
best speedups and is sequentially faster than the PB algorithm (by 60%), which comes
second in terms of speedup. Three other aspects are of interest when comparing the
three algorithms: CnDEs/OWCTY are exact LTL algorithms while the PB may miss
counterexamples [Hol12]], CnpFs is on-the-fly while the PB explores the whole state
space before reporting a counterexample [Hol12|] and owcTy typically explores a large
portion of it (see [Section 7.4.3)), and CnpFs is found to return even shorter counterex-
amples than a parallel BFS-based algorithm (see [Section 7.4.4)! On the other hand,
the BFS-based algorithms owcty and PB can be distributed on a cluster, as DIVINE
demonstrates [Bar+10].
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11.5 Memory Usage

State compression. We measured the memory usage of DiVINE, LTSmin with and
without tree compression and of spiN with and without CoLLAPSE compression (col) and
hash compaction. shows the memory usage of all these combinations. The
first thing we noticed, is that the memory usage is almost independent of the number
of threads, showing that the model checkers add little overhead for parallel operation.
SPIN’S memory usage is measured by reducing the hash table size to exactly fit the state
count, hence overestimated by at most 50%. We can however conclude that tree com-
pression provides great reduction compared to full-state storage in a hash table making
lossy hash compaction redundant. And the cleary-tree improves upon this by almost a
factor of two. In [LPW11c], we compared compression methods in detail.

To further investigate the difference between the compression techniques in LTSMIN,
we isolated the memory usage of the hash table, the tree table and the Cleary tree.
shows these figures. We deduce that indeed the Cleary tree is able to almost
halve the memory usage compared to the normal tree table. To compare the compres-
sion ratios better, we also calculated the average memory occupied by a singly state in
the state store. These results — now with different benchmark set — comply with the ob-
servations made in|Chapter 3|and [Chapter 4} The tree table has an optimal compression
of 8 bytes per state and a median compression of 9.6 bytes per state, and the Cleary tree




consistently uses 4 bytes less (see[Cemma 4.2)). Indeed, the experiments show that this
optimum is easily reached in practice, even for a real-world PROMELA model like the
GARP protocol.

These are important differences, as the storage of visited states cannot be circum-
vented as explained in Therefore, the memory occupied by the visited
states determines the maximum size of the system that we can model check. (It is true
that the size of these state stores can be further reduced by the smart use of caches, as
explained in[Section 1.4.3] but this can be considered an orthogonal approach to reduce
memory consumption). For completeness, we also include the maximum size of the
BFS queue. In these case, the queues use a relatively insignificant amount of memory,

Table 11.3: Total memory usage (MB) in spIN, DIVINE and LTSmin is almost indepen-
dent of number of threads. The lowest values for sequential and concurrent runs are
shown in bold.

SPIN Di1VINE LTSmin
he nohc col table tree Cleary
1 47 1 47 1 1 47 1 48 1 48 1 48

GARPI1|1.5¢4 1.6e4 1.4e5 1.4e5 4.9e4| n/a n/a|8.7e3 8.8e3 1.1e3 1.3e3 9.0e2 1.1e3
Peterson4|5.7¢3 6.2e3 4.4e4 2.5¢4 5.5¢3| n/a n/a|l1.3e3 1.3e3 1.5¢2 1.6e2 1.0e2 1.0e2
I-Protocol2|1.2e4 1.2e4 1.3e5 1.3e5 4.8e4| n/a n/a|2.2e3 2.2e3 1.9¢2 2.5¢2 1.4e2 1.9¢2
Anderson.6|1.1e4 1.1e4 1.3e5 1.3e5 5.4e4|4.5e3 4.6e3|2.1e3 2.1e3 3.2¢e2 4.6e2 2.5¢2 3.7e2
At.5(1.2e4 1.2e4 1.3e5 1.3e5 5.4e4|4.6e3 4.9¢3|3.1e3 3.1e3 7.3¢2 8.0e2 6.1¢2 6.6e2
Bakery.7|1.3e4 1.5e4 1.7e4 1.7e4 6.4e3|4.8e3 4.9¢3|2.8e3 2.9¢3 4.0e2 4.2e2 2.5e2 2.8e2

Table 11.4: Memory usage (MB) of state storage (hash table, tree, or Cleary tree) and
BFS queues in LTSMmin. The lowest values for the state storage are shown in bold.

Memory | Memory state storage Bytes per state
queues | table tree Cleary | table tree Cleary

GARP1 149 | 8363 373 179 | 182.0 8.0 4.0
Peterson4 09 | 1321 97 51 | 1060 8.3 4.3
I-Protocol2 1.9 | 2176 109 56 | 158.0 8.1 4.1
Anderson.6 7.6 | 2030 139 74 | 1140 8.1 4.1
At.5 18.2 | 2912 245 124 | 940 8.0 4.0

Bakery.7 1.9 | 2789 243 138 | 102.0 8.8 4.8




because we store references in the queue (see [Section 3.3.3)). Except for some small
pieces of static data, the model checker does not use more memory.

These results translate to the setting of LTL checking, as the multi-core NpFs al-
gorithms presented in part [Part ITI| only require a few additional bits per state to record
its color. And although local colors require a bit per state per thread in the worst case,
they are only used for coloring states on the search stack or visited states in the nested

search, which we found in practice to be very few (see [Section 7.4.7).

Partial-order reduction.

LTSmin implements a version of Valmari’s [Val91b|] stub-

born set partial-order reduction algorithm. This algorithm was suited for the language-
independent interface of LTSMIN because it lacks a notion of processes and depends
solely on a notion of structural transitions and their guards. On the other hand, the
process-oriented ample-set method [[KP88b] that is implemented in spin [HP94] is of-
ten faster because transitions are far more numerous than processes. To remedy this, we

Table 11.5: POR performance in LTSMIN and spIN

Model

No Partial-Order Reduction
LTSMIN sPIN
States |S|  Trans |7| Time Time

Guard-based POR
LTSmIN
A|S| A|T| Mem. Time

Ample-set POR
SPIN
A|S| A|T| Mem. Time

GARP1
I-Prot.2
Peterson4
I-Prot.0
BRP
Philo

sort
I-Prot.3
I-Prot.4
Snoopy
Peterson3
SMALLI
SMALL2
X.509
DBM
SMCS

48,363,145 247,135,869 166 267
14,309,427 48,024,048 28 30
12,645,068 47,576,805 23 17
9,798,465 45,932,747 29 38
3,280,269 7,058,556 6.0 5.6
1,640,881 16,091,905 9.8 10
659,683 3,454,988 2.8 3.8
388,929 1,161,274 1.0 0.7
95,756 204,405 0.5 0.1
81,013 273,781 0.6 0.2
45,915 128,653 04 0.0
36,970 163,058 0.5 0.0
7,496 32,276 04 0.0
9,028 35999 04 0.0
5,112 20,476 0.4 0.0
5,066 19,470 04 0.1

4% 1% 21 68
16% 10% 29 31
3% 1% 6 3
6% 2% 7 21
29% 15% 15 14
5% 2% 1.2 4.8
182 181 0.0 0.3
14% 7% 09 0.9
28% 18% 0.5 0.6
12% 4% 0.2 0.7
8% 3% 0.1 04
18% 9% 0.1 04
19% 10% 0.0 04
10% 4% 0.0 04
100% 100% 0.1 0.5
17% 7% 0.0 0.4

18% 9% 932 25.2
24% 16% 240 6.0
5% 2% 37 0.5
44% 29% 362 12.3
58% 39% 161 24
100% 100% 125 10.7
182 182 0.3 0.0
26% 16% 6.6 0.1
38% 28% 2.5 0.0
17% 7% 1.2 0.0
10% 4% 0.5 0.0
48% 45% 0.9 0.0
48% 44% 0.4 0.0
68% 34% 1.1 0.0
100% 100% 0.7 0.0
25% 11% 0.7 0.0




extended the stubborn set algorithm with efficient heuristics and a necessary disabling
set [Laa+13al].

We see in[Table T1.5|that the reductions obtained by LTSmiN’s POR are consistently
greater than those of spiN’s ample set. An expected result, as the stubborn set method
is more fine-grained than the ample-set method [Val91a]. On the other hand, this also
makes the algorithm around 8 times slower than the ample set (see for instance the
runtimes of the I-Protocol2 model compensated by the difference in the reductions).
We think this is a justifiable trade-off given that the better reductions yield nominally
competitive runtimes, e.g. for the Philo, I-Protocol and GARP1 models, and that our
method is completely language agnostic (it could easily support for example a process-
algebraic language such as MCRL2 [|Gro+08]], which has a different notion of processes).

Finally, we also used our multi-core algorithms with partial-order reduction to ver-
ify a different version of the GARP protocol [[KLJ10]. Prior, this model had only been
verified using lossy hash compaction in spiN. LTSmin with SPINS could explore the
smallest instance of the model completely, using a Cleary tree and partial-order reduc-
tion, proving that it is indeed free of deadlocks (up to the correctness of the model
checker itself). The tool explored upward of 12 billion states.

11.6 Conclusions

We presented additional experiments using a 48-core machine and a new set of PROMELA
models. The PROMELA semantics are implemented by SpiNS: a new frontend for the
LTSMmiIn toolset. We demonstrated how the many capabilities of LTSmIN can be ex-
ploited and with experiments we showed great enhancements for model checking of
PROMELA models: through C code generation its performance is on par with sPIN’s,
scalability of reachability is better than spiN’s latest parallel BFS algorithm, tree com-
pression reduces memory usage with a factor 5 compared to COLLAPSE compression
and maintains performance, POR can compete with spin’s POR, exact scalable parallel
LTL is available for PRoMELA for the first time.

We also repeated — on a 48-core machine — the benchmarks of the entire BEEm
database, the set of models used in [Part II] and [Part 11T, These results (thousands of
benchmarks on hundreds of different models/properties) are available onlind™2 and
demonstrate the same scalability and efficient memory usage as found in the current
chapter.

We aimed to implement PROMELA’s semantics as close as possible to spIN’s; the
state and transition counts for all the models discussed in the current chapter are equal to
SPIN’s sequential algorithms (the new parallel algorithms seems to increase the number
of states compared to sPIN’s own sequential algorithms).







Conclusions

12.1 Summary

We proposed scalable and on-the-fly methods for multi-core model checking of both
explicit-state and timed systems.

12.1.1 Multi-Core Reachability

For the first time in model checking, we realized almost ideally scalable multi-core
reachability by using an algorithm which exploits shared memory more directly than
distributed algorithms do, by means of a shared visited set. This set is implemented by
a lockless hash table which we designed specifically for the steep memory hierarchies
of modern multi-core systems.

Our method is on-the-fly because of its flexibility with respect to the search order
used by the reachability algorithm. It also supports state compression by replacing
the hash table with a lockless tree table, which can provide sharing between states.
Due to the highly combinatorial nature of most model checking problems, the obtained
compression is often close to an optimal that consists of two integers per state in its
current implementation that is tailored to the physical hardware constraints of current
machines.

Incremental tree compression ensures that the sequential performance of the tree
table is similar to that of the hash table. And a parallel compact hash table further
reduces the compressed size per state to 1 integer. But our scalable concurrent compact
hash table can also be used in isolation for application outside of model checking, such
as in BDDs.



All the above methods have been extensively benchmarked using the entire BEEM
database, which contains hundreds of DVE models, and several real-world PROMELA
models. The results show almost ideal scalability and confirm that compression is
close to optimal. 1t should be emphasized here that the (sequential) performance of
our implementation is on par with that of the state-of-the-art spin model checker, lend-
ing extra credibility to the obtained results (a sequential slowdown of a certain factor
hides communication costs and results in a similar factor of “free” speedup).

12.1.2 Multi-Core LTL Model Checking

We present the first parallel LTL model checking algorithm which is linear in the size
of the graph. Our multi-core nested depth-first search (Mc-NDFs) algorithm is based on
a novel approach of running multiple parallel depth-first searches in semi-independent
fashion. The earlier algorithms we propose, use more independence and seem to pre-
serve enough of the depth-first order to guarantee soundness and completeness, while a
later algorithm optimistically continuous searches, repairing out-of-order steps using a
waiting strategy. For all of these algorithms we presented rigorous correctness proofs.

Experiments show good scalability of Mc-NDFs, especially cNDFs, which performs
better than the distributed owcTy algorithm.

We show how livelocks can be checked with a parallel DFsgr, algorithm. This so-
lution supports excellent partial-order reduction and experiments confirm it has better
scalability and performance than cNDFs.

12.1.3 Multi-Core Model Checking of Timed Systems

We proposed a lockless multimap to store the symbolic abstractions needed for model
checking of timed automata. With a precise locked algorithm and a revisiting non-
blocking algorithm, we realize scalable multi-core reachability for timed automata.

By porting cNDFs to the timed setting, we also realize for the first time parallel LTL
model checking of timed systems. We further propose methods to exploit properties of
the coarsest time abstraction, called subsumption abstraction, in our LTL model check-
ing technique.

These methods were all implemented and experiments show good scalability, with
speedups of up to 60 times with respect to UPPAAL, a state-of-the-art model checker
for timed automata. The subsumption abstraction can reduce the number of states by a
factor of 2.



12.1.4 Tool Support

All data structures and algorithms are implemented in the multi-core backend of the
LTSMmin model checker [LPW11a]. This tool is actively maintained by the Formal Meth-
ods and Tools group at the University of Twente.

LTSmin is a language-independent model checker which currently supports Di-
VINE’s DVE language, sPIN’s PROMELA language, UPPAAL’s timed automata, and tCRL
and MCRL2 process algebras. For the empirical evaluations of explicit-state systems in
the current thesis, we consistently employed DVE and PrRoMELA models, because these
are compiled to binaries and offer fast next-state functions, yielding a realistic mea-
surement of the parallel scalability of our proposed methods. While we have checked
that yCRL and MCRL2 models scale equally well, this knowledge offers less insight
into the scalability of the methods because of their relatively slower generation of suc-
cessor states, as explained in Although we were not interested in these
languages from our research perspective, they benefit a lot from the parallel methods
proposed here, as a user of MCRL2 is more likely to run into runtime bottlenecks.

Next to the multi-core backend, LTSMIN also supports efficient BDD-based sym-
bolic model checking techniques [BPW10; [BPOS], a distributed backend [BPW09],
and a sequential backend using the general-state expanding algorithm [BLLLO9||[Pat11]
Sec. 4.6] (the latter is beneficial for tasks that are still not supported by the multi-core
backend, such as LTL checking using por). The explicit backends support incremental
hashing [NRO8|| via Zobrist hashing [Zob69], as explained in [LPW11a]. The sym-
bolic backend also supports multi-core (symbolic) explorations using the parallel BDD
packages Sylvan [DLP13]]. All these backends are language-independent.

Language-independence is achieved through the definition of the generic Partitioned
Next-State Interface (piNs). Through its pins interface, LTSminN abstracts away language-
specific features with a state vector format and semantics. At the same time it exposes
internal structure in the form of locality information through dependency matrices as
described in[Definition 12.1] The locality information provided by the matrix Dy, can
be used for example to learn the partitioned transition relation, avoiding many calls to
the next-state function or allow symbolic processing [BPOS|].

Definition 12.1 (pins). pins [[BPWI0] defines a state vector format S = (sq,S1,-..,Sn)
with a fixed number of n slots and fixed domains |s;|, an initial-state function:
INITIAL-STATE : S, and a k-partitioned next-state function: NExr-state({l,...,k},S): S,
and a dependency matrix Dy, recording read/write dependencies between transitions
and slots.

LTSmin further supports several logics to express (liveness) properties, including
LTL, CTL, CTL* ad p-calculus. Some of these are handled in a generic fashion, trans-




forming the state space through so-called piNs2pins wrappers [DLP12]]. For example,
LTL is implemented with a wrapper that synchronizes a Biichi automaton on-the-fly,
extending: the state vector with the locations of the Biichi automaton, the transition
relation with the cross product transitions, and the state-label function with a Biichi ac-
ceptance label [Patl 1} Sec. 4.6]. u calculus formulae can be combined to Parametrized
Boolean Equation Systems for which a parity game is generated [KP12]], which can then
be handled by specific solvers.

To enable PoR, pins was extended with guards in the form of Boolean state label (see
[Definition 12.2). The status of guards — enabled or disabled — can than be queried per
state, and the Por algorithm can then use the additional dependency matrices to decide
how to reduce the generated transition system [Val98|. Because the por algorithm in
effect selects a subset of the next-state function, it can be implemented as a PINS2PINS
wrapper as well [Laa+13a].

Definition 12.2 (rins for por). The interface defining in [Definition 12.1|is extended

the labels that function as guards for a specific partitioned transition, and a state-label
dependency matrix Lgy, recording which state-vector slots are read by each label. Ad-
ditional matrices can be added to encode commuting transitions and enabling and dis-
abling relations between transitions and state labels.

12.2 Evaluation

The current section studies to what extent the goals of have been met.

12.2.1 Scalability
The main research question posed in is: “Can the model checking pro-

cedure scale, linearly or ideally, on modern multi-core machines?”. We can answer
this question positively, as the extensive experiments with our reachability and LTL
algorithms for both explicit-state and timed systems all show good to ideal speedups.

The experiments with our multi-core reachability algorithms show almost ideal
speedups even on a 48-core system, while their sequential performance is on par with
state-of-the-art model checkers such as spiN. Experiments also reveal a significant im-
provement with respect to the prior state-of-the-art parallel solutions [BRO8; [HBO7].
This can be explained by our more direct use of shared memory, as opposed to the dis-
tributed approaches in earlier work [BROS|]. Moreover, our lockless data structures take
more care to utilize the limited bandwidth and avoid relatively slow random memory
accesses of modern multi-core machines.



The cNDFs algorithm also provides good scalability for LTL model checking prob-
lems. The algorithm is guaranteed to be linear in the size of the graph, and the first
parallel LTL checking algorithm of this kind. The worst-case speedup is 1, but experi-
ments show that this never happens for large real-world inputs. Finally, parallel DFSgo
for livelock checking has the same properties as cNDFs, but provides better scalabil-
ity (almost ideal). This can be explained by the breadth-first manner in which it treats
progress states.

The scalability of both LTL and reachability algorithms is transferred to the timed
setting because the same data structures and algorithms are used. However, for models
that exhibit more timing behavior, scalability decreases. This can be explained by the
additional locking required on the multimap that manages the symbolic representations
of the time abstractions. Unfortunately, we have no way of directly comparing these
results with earlier tools that introduced distributed model checking for timed automata.

[Section T.5.4Jhowever defined model checking more broadly to also include systems
with hybrid and probabilistic behavior, and properties from branching-time logics such
as CTL and the modal pt-calculus: No absolute boundaries for the current research were
set upfront, only a logical order of tackling them. In the subsequent section, we will
discuss the status of these outstanding open problems.

12.2.2 Correctness

The first subquestion concerns itself with the correctness of the methods proposed here:
“Are our proposed methods for multi-core model checking provably correct?”.

In the case of the data structures proposed in the current thesis, we consistently
offered at least good arguments for their correctness. An abstracted version of the lock-
less hash table was also implemented in PRoMELA and model checked. This process
revealed one bug concerning a non-deterministic probe sequence, which we fixed in the
algorithm. The fact that the tree table is consistent and durable in its storage of state
vectors follows directly from the fact the tree can be described as an injective function
projecting each state to a unique location in its root table. Afomicity and isolation should
be guaranteed by the correctness of the hash table used to implement the tree’s root and
node tables. For the locking procedure of the compact hash table we provided a proof
of correctness that concludes linearizability.

In the case of the multi-core nested depth-first search algorithms, we provided in all
cases rigorous poofs for their soundness and completeness with respect to determining
Biichi emptiness.

In the case of the timed verification methods, we illustrated correctness by showing
the correspondences with the sequential algorithm. By contradiction, we showed that
our locking strategy of the multimap ensures the absence of revisits in the reachability




algorithm. The non-blocking implementations of the reachability algorithms do not
exhibit this property and have not been proven correct.

Furthermore, we should note that all our proposed methods preserve the complete-
ness property of model checking. In strong contrast to methods that employ lossy ap-
proaches, such as hash compaction, bit-state hashing using Bloom filters, etc.

On the level of the implementation, we consistently validated our work by compar-
ing state counts, transition counts, number of counterexamples and verification outcome
with other tools for all input models and all performed benchmarks.

12.2.3 Compatibility

The second subquestion addresses the issue of compatibility with other state-space re-
duction methods: “Are our parallel model checking procedures compatible with other
existing approaches to tackle the state space explosion problem?” A multitude of tech-
niques combating state explosion has been presented in Some of these
are orthogonal to our approach and have not been considered in the current thesis. For
example, we did not study any symbolic verification techniques, nor did we focus on
any specific formalisms such as Petri nets.

For the explicit and semi-symbolic (timed) approaches that we did study, several
important reduction techniques can be identified, these are: on-the-fly model checking,
state compression and partial-order reduction. This selection is based on extensive ex-
perience in that field with the (explicit-state) model checker spin [Hol08; [HBO7; HIGO8;
Hol97b}; [Hol12]. summarizes to what extent the contributions in the current
thesis are compatible with these techniques.

The on-the-fly behavior of our contributions is good since the use of a shared state
store allows flexible exploration orders. Parallel depth-first orders are indeed known for
excellent on-the-fly behavior in many cases [RK88]|. Since the parallel LTL algorithms
use depth-first strategies, they have the potential to find accepting cycles that are deep in
the state space much faster, as our experiments confirm in|Section 6.4|and|Section 8.5.6
In the case of reachability, our experiments focus on exhaustive exploration in order to
benchmark the scalability better: On-the-fly hunting for deadlocks is not tested, as the
process often terminates so quickly that it is hardly interesting (which again confirms the
usefulness of on-the-fly algorithms). The gains for finding reachability properties can
however be deduced from the experiments done with our LTL algorithms in[Section 6.4]
This behavior is likewise preserved for our solutions for timed systems in

State compression is also compatible with all our contributions. Experiments with

explicit-state reachability in and timed reachability in confirm this.

Extensive experiments with our multi-core LTL algorithms and tree compression are




Table 12.1: Compatibility of the different contributions with existing state-space reduc-
tion techniques
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available online (see footnotd ™2 on page, confirming that indeed this combination
works equally well.

Tree compression yields an optimal compression of up to 8 bytes per state as
demonstrates. In practice this compression is often achieved due to the com-
binatorial nature of many inputs, which is indeed confirmed by experiments that show
a median compressed size of 9.6 bytes per state (Figure 3.13). With compact hash
tables, this median size is further reduced to 9.6 — 8 +-4 = 5.6 bytes per state: Each
state requires at least one root, stored as an 8 byte key in the root table of the normal
tree; a table that is replaced by a compact hash table with 4 byte keys in the compact
tree (Section 4.4).

Coupled with the fact that incremental tree compression is often equally fast as plain
state storage, tree compression makes a good competitor to lossy hashing schemes (see
such as hash compaction, which require around 4 byte per state [GVR99].
Though bit state hashing with Bloom filters can offer compressions of a few bits per
state, like any hashing shame, their use complicates the checking of liveness proper-
ties [BHR13]]. We therefore conclude that our proposed compression scheme is even
competitive to the lossy hashing schemes.

Partial-order reduction also combines well with multi-core reachability because
the computation of ample sets is completely local for reachability properties such as
deadlocks [Laa+13a]]. These results can be extended to timed systems as the partial-
order reduction techniques are similar [Min99; |JLX09; |Ben+98]|.




The slowdown of the ample set calculation is even advantageous to the scalability
of the multi-core algorithms since Holzmann et al. [HB0O7] indeed showed that transi-
tion delays improve scalability. The smaller state spaces on the other hand cause lower
scalability as there is less work to be parallelized. The interesting cases, those whose
reduced state space is even very large, should however scale excellently as indeed we
could confirm experimentally.

Other safety properties require global analysis and can be handled by our solutions
for LTL model checking. Partial-order reduction however has not been achieved in our
parallel LTL algorithms as we did not find a way to realize the (global) ignoring proviso
in the parallel setting. This is the only case were we still have a negative result as shown
by the crosses in[Table 12.1] Parallel bFs, solves this problem partly by providing a
solution for livelocks, an important subset of LTL, allowing por.

12.2.4 Empirical Evaluation

All our experiments are done with the implementation discussed in In
all cases the experiments are repeatable because we supplied complete command lines,

input models, tool versions and hardware configurations. In some cases, the experimen-
tal data and the scripts are available online, e.g. in: [Chapter 4 [Chapter 9/and|Chapter 10|

The experiments are extensive as they cover a large set of models in the DVE lan-
guage obtained from the BEem database, which contains over 30 different types of mod-
els drawn from academic studies and games. These models come in different sizes, to-
taling the benchmark set to over 300 models. Over 400 LTL properties are included.
Further experiments with real-world PRoMELA models further confirm the results (see

(Chapter 11).

12.3 Comparison with Recent Related Work

The current section discusses some more recent related work that was done after our
researches. Most of this work has already been discussed in and will be
revisited with a more technical perspective. Other connections with related work were
recently discovered via private communication.

The spiNn model checker was recently refitted with a better multi-core algorithm by
Holzmann [Hol12] (see experiments in [Chapter I1)). The algorithm is similar to the
distributed approach presented in [BROS]], but improves the communication bottleneck
by introducing N to N communication channels: each of the N worker threads has N
queues for incoming states and N queues for outgoing states. Holzmann shows for the
first time that these algorithms can also scale on modern multi-core machines. Because



of the states are statically partitioned over the worker threads, the algorithm can in fact
be improved with separate local hash tables, instead of one shared hash table. Further-
more, complications in the implementation limit scalability with exact state storage, so
[Hol12] uses lossy hash compaction to remedy this. We implemented this algorithm
in LTSMIN version 2.0 (command line option ——strategy=pbfs), and can confirm
that the algorithm in fact also scales for exact reachability.

D1VINE recently also implemented compression [Bar+13]]. A difference in the Di-
VINE implementation of tree compression is the choice for n-ary trees with resizing hash
tables [Sti13|]. The resizing tree table is probably necessary because the distributed al-
gorithms in D1VINE require multiple (sequential) trees to be maintained by the threads
running the search algorithm. However, this doubles the size of the optimal compressed
size from 8 byte to 16 byte ([Stil3]] does not use compact tables yet) because an ad-
ditional stable index needs to be stored for node entries that are now reindexed upon
resizing. The choice for an n-ary tree further increases the optimal compressed sizes,
although no analysis of the compression ratios (such as the one in is pro-
vided in [Sti13]]. While the n-ary tree configuration may improve the number of tree
node lookups, and thereby the runtime, it is unlikely to deliver an exponential gain as
incremental technique can do (see[Section 3.3.4).

Lately, Evangelista et al. [EKP13|] proposed an exact (non-lossy) compression tech-
nique based on compact hashing. The algorithm is parallel and was shown to scale on
modern machines with an implementation in an interpreted functional language. The
technique is based on storing back pointers for states that can be used to reconstruct full
states by reexploration. This guarantees a fixed size of the compressed sizes, whereas
in tree compression these depend on the combinatorial structure of the states space.
The downside is the additional cost for the reexplorations, though this could easily be
mitigated with good caching techniques [BLPO3||.

We furthermore found that the implementation of our tree table resembles tech-
niques often used in BDDs [Jan+06], where pointers are avoided in favor of more
compact hash table indices. The same methods were used in our parallel BDD pack-
age [DLP13|], improving prior results [YO97].

The competitor to cNDFs is the distributed owcry algorithm [CP03]). The algorithm
existed a decade before cNDFs, and was more recently extended with partial-order re-
duction [BBR10a] and hash compaction [BHR13|. The worst-case time complexity of
owcTy that is quadratic in the size of the graph, with the nice feature that it is know
to be linear for weak properties, a substantial subset of LTL [BBR09al]. Theoretically
the algorithm is however more likely to scale good because it can be implemented with
BFS. CNDFs on the other hand has a worst-case complexity that is linear in the size of the
graph. Its scalability is theoretically limited due to its use of prs. In practice however,
we have shown that cNDFs scales better than owcty. The availability of por however




Table 12.2: Comparison between owcTy and CNDFs

OWCTY CNDFS DFSpro
. Weak LTL Linear Linear Linear|!%!
Worst-case complexity . .
Full LTL | Quadratic ~ Linear No
. Theoretical | Excellent Not good Decent
Scalability .
Practical | Good  Very good Excellent
. . Livelocks | Decent None Excellent
Partial-order reduction
Full LTL | Decent None None

tilts the favor towards owcty for inputs with much commutative behavior. For livelock
properties however parallel DFsg is the way to go. summarizes this com-
parison. Both livelocks and weak LTL properties can be identified statically [BBR09a;
Val93|], hence we could essentially lump DFsg, and cNDEs together in one column.

sPIN was also extended with an incomplete parallel LTL algorithm called Piggy-
back [Hol12|]. Its scalability was discussed in [Chapter [1]and|Chapter 8| and is good,
yet inferior to cNDFs. However, we suspect that its reliance on hash compaction might
yield unsound results as explained in [BHR13|.

Our parallel timed LTL algorithms also deal with subsumption abstraction. Kon-
nov made us aware that a similar abstraction arises in (dynamic) symmetry reduction
techniques [EWO05]. This similar abstraction relation was in fact likewise combined
with LTL model checking by Konnov et al. [KZ10]. They even used the same NDFs
algorithm as a basis and proposed similar (but fewer) points in the algorithms were ab-
straction could be used. Experiments revealed however that the blowup caused by the
depth-first order did not stand up to the gains obtained by the reduction and the effort
was abandoned. It is indeed likely that owcty would yield smaller state spaces due to
its use of BFs [BHVO0O0]. However, it is currently unknown how owcTty can be combined
with subsumption abstraction.

In private communication with Henri Hansen, we learned that the redundancy of
the ignoring proviso for DFsg, Was already observed by Valmari. In “Stubborn Set
Methods for Process Algebras” [[Val97], Valmari proved the more general property in
Lemma 5.1, showing that actually all minimal divergence traces are preserved without
the ignoring proviso.

12.10nly for livelocks.



12.4 Open Questions

The first way to extend the results in the current thesis is to look at a broader definition
of model checking. Avoiding the eternal question whether branching-time or linear
temporal logics are more suitable for model checking (see [Section T.4)), we could just
continue to employ the current results for solving CTL and p-calculus checking. We
could also investigate parallel solutions for symbolic approach based on our parallel
hash table, or create a heterogeneous approach by combining distributed and multi-
core model checking. illustrates this by filling in[Table 1.1]in[Section 1.5.3}
We will discuss some of the open questions that the table suggest and discuss related
work that may solve it already or could be used to solve it.

Table 12.3: Extending the scope of the current research

@ §
N

= & 5 L é § §

S S O YV FTLT SN

= § §&E 90 F S

5 3 FOOCXT §S

= o) S
Reachability ?

£ |LTL X 27 2

& |CTL ? 202 27 2
u-calculus ?2 0?7 7 ? ?
Reachability ??

g LTL X 7 2

& |CTL 2 02 2 2 2 2
u-calculus 2?7 7 7 ?
Reachability | 2 2 2 2?2 ? ?

§ LTL 207 2 7 2

&% |CTL Y S Y Y
u-calculus ?2 0?2 2 2 27 2

Multi-core symbolic BDD-based model checking is less of an open problem as re-
cently van Dijk et al. [DLP13; [DLP12] introduced the parallel BDD package Sylvan.
The proposed technique uses a modified version of the lockless hash table presented




in and is a direct continuation of the current project which already shows
promising results.

Important work on the problem of parallel checking of branching-time logics and hy-
brid/stochastic/probabilistic formalisms was summarized by Luecke and Brim [CliO8]],
though it mainly focuses on distributed solutions. For CTL, some techniques that scale
on multi-cores have been proposed by Saad et al. [SZB12; [Saal1]. For probabilistic /
stochastic systems some distributed techniques for reachability exist [Blo+08b; [BHO6].
But also solutions for using multi-cores for LTL checking [Bar+08|] and for CTL* check-
ing [[BO6] (a superset of both LTL and CTL, but a subset of p-calculus).

We were unable to find any work on the combination of distributed and shared-
memory parallelism, as suggested by the last column in the table. But other work pro-
poses solutions for large-scale distributed model checking using bulk synchronous par-
allel (BSP) computing [[GGP12a; |GGP12c; GGP12b; MHOO]. Such algorithms might
be useful to realize the hybrid parallelism required for exploiting massive cloud com-
puting environments.

Multi-core reachability. Due to good scalability, we consider reachability mainly
solved, though it might still be interesting to investigate:

e Although, we have enough confidence in the correctness of our lockless data
structures, it might be interesting to come up a complete machine-checkable
proof. Huisman et al. are pursuing this goal in the VerCors project [Ami+12]
and are actually using our lockless hash table as a case study [ABH13]].

e Reexploration of states is not required for all model checking algorithms. Can an
imprecise algorithm deliver better scalable performance? This is hard to imagine
as the solutions presented in[Part Il|already perform almost ideally, but there may
still be specific inputs for which other approaches are required.

Multi-core nested depth-first search. Our Mc-nDFs algorithms still pose some
interesting research directions:

e A main remaining issue is whether por can be combined efficiently with cNDFs.
The benefit here is that the algorithm already uses DFs, which is traditionally used
to implement the required ignoring proviso [[Val91a; EP10]. It is easy to prove
using that indeed a cycle proviso can be implemented in the outer,
blue search by expanding a state fully upon detecting a cyan state, which must be
on the local stack. However it remains to see whether the revisiting problem can
be solved for cnprs [HPY96], whether the algorithm would still terminate, and



whether multiple parallel searches might not cause a large over-estimation of the
proviso.

e The most interesting open problem to consider is whether there is a linear-time
Biichi emptiness (cycle-detection) algorithm that delivers guaranteed scalability.
We did not find a way to combine the sharing of the red color in the LNDFs
algorithm with the sharing of the blue color in the cNpFs algorithm (which only
does late red coloring after dangerous situations have been repaired). We consider
it likely however that there exist ways to improve cNDFs for specific inputs such
as weak LTL.

e We conjecture that[ATgorithm 5.4] (and hence also[Algorithm 5.3) is correct for 2

workers without await statement. In private communication, Wan Fokkink posed
the related conjecture that the algorithms are correct for any number of workers
when the await condition is modified to count = 1 (instead of count = 0). As of
yet, neither conjecture has been proved.

e The problems for which owcry is linear-time can be identified statically by in-
specting the LTL property [BBR09a]. In the previous section, we saw how cNDFs
is always linear-time, but may scale worse. It is unfortunately still unknown to
us which inputs could cause cNDFs to scale bad. In the multitude of benchmarks
we presented, none could be identified. It would be interesting to investigate this
using artificial input models or even random graphs.

e Additionally, we could try to mechanize our cNDFs proofs. We believe the method
is detailed enough to be easily expressible in a theorem prover, which can auto-
matically discharge them. This research would be in line with other attempts to
proof correct implementations of formal methods [Esp+13]].

e Finally, we could try to invent better fresh successor heuristics. For example, we
did not try yet to give priority to cyan states, which could speedup the backtrack-
ing and hence improve the global sharing in cNDFs.

More useful optimizations. Some other optimization techniques are very useful
for specific problem instances:

e State space caching (on disk) could further increase the size of input that can be
handled by our algorithms. We suspect that there is little in the way to use current
approaches [BLPO3; HWO7], since our algorithms allow for flexible search orders
and load balancing.



e Various works propose methods for obtaining short counterexamples in LTL model
checking [GMZ04; [HGO8]]. Normally counterexamples can be rather long due to
the depth-first nature of the search. This increases the cost of analyzing them
(usually a manual process). The combination of these works might be more chal-
lenging. On the other hand, most of these methods are based on (iterative) depth-
first searches. It could be interesting to apply our technique of parallelizing such
algorithms (see[Part IIT). In [GMZ04], each search iteration is constrained search
to the length of the smallest counterexample found thus far. Since we know now
that parallel depth-first searches aid in finding shorter counterexamples quicker

(see [Section 7.4.4), a parallel version of the algorithm in [GMZ04] could yield
excellent speedups.

e Fairness can be expressed in LTL, but at great costs. Algorithm-specific solutions
solve this much more efficiently [LSD09b; CPO03|]. We wonder whether cNDFs can
be extended for Biichi automata with additional fairness encoding.

e Bit state hashing can easily be combined with multi-core reachability as the Bloom
filter data structure can be parallelized directly using atomic instructions. Parallel
Bloom filter already exist that optimize towards the caching behavior of modern
machines [PSSO7]. The combination with LTL model checking seems harder,
as the algorithms need to associate data with different states, although Bloom
filters do exists for this problem, they are unsound, in addition to being incom-
plete [Cha+04].

e DBMs could be compressed just like states as is done in [Stil3].

Other directions. Can the ideas behind multi-core NDFs — basically the graph is
decorated with information on partial results from local computation to aid the global
progress — be reused to parallelize other linear-time algorithms? An interesting candi-
date is Tarjan’s algorithm for detecting strongly connected components (Sccs) [Tar72].
Like NDFs, it is based on DFs and can also be used for cycle detection [Cou99; [SE05};
GS09], but has far broader applications [BCPO8]. More specifically, it can be used
for the efficient checking of properties with strong fairness [LHOO; CP03]). Currently,
the only known parallel solutions for Scc detection are quadratic in the worst case,
e.g. [BCPOS; [Bar+11bj |[Kre+; LSD09a]

In a more general setting, we could consider various other graph algorithms which
rely on depth-first methods.

We did not yet study the effect of the explicit use of the NUMA architectures as we
did not find this to be a bottleneck in the current situation. In this light, it is however
interesting to note that the switch from a 16-core NUMA to a 48-core NUMA machine



resulted in significant contention points in a load balancer implementation which all
of the sudden became a bottleneck. This problem was resolved by letting the worker
threads each do their own allocation of thread-local memory (in the previous situation,
an main thread was assigned with this task). Apparently, the operating system thus
allocates memory automatically on the local memory bank. We could further optimize
the implementation by using the NUMA library explicitly for e.g. the allocation of the
lockless hash table or tree table: The library allows the bucket array to be allocated in
distributed fashion over the different memory banks.

As identified in the previous section, it is currently unknown how owcty can be
combined with subsumption abstraction (including the abstraction used in dynamic
symmetry reduction). It could yield better state-space reductions due to its use of BFs.

12.5 Predicting the Future

Heterogeneous systems will become more common already with AMD’s latest Kaveri
microprocessors which include a completely integrated and autonomous GPU. The ad-
vance of NUMA architectures is also unstoppable. Eventually, we will arrive at Net-
work on Chip processor designs. And alternative approaches to parallel reachability,
such as proposed in Saad et al. [SZB10;|SZB11}[Saal1]], might be necessary. They use
a dynamic way to distribute states over the available processing cores. The distribution
is controlled by a dedicated shared data structure, which could be adapted to the more
heterogeneous architecture.

Finally, a consequence of Moore’s law is that memory hierarchies grow ever steeper.
This causes random memory accesses to become more expensive, and in turn non-linear
algorithms will become more expensive. We hope that use of parallel prs searches
might fill a gap here, although a precise evaluation of their suitability depends on a
more rigorous analysis of their scalability.
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A.1 Correctness Proof for Mc-ndfs

This appendix presents the full proof of Mc-NpFs, [Algorithm 5.3|in [Chapter 5] We
assume that each line of the code above is executed atomically. The global state of the
algorithm is the coloring of the input graph B and the program counter of each worker.
The approach presented here is different from the one in[Section 5.4.3] which is based

Algorithm A.1 A Multi-core NpFs algorithm, coloring globally red in the backtrack

proc mc_ndfs(s,N) 13 proc dfs_red(s,i)
dfs_blue(s, 1)]|..]|dfs_blue(s,N) 14 s.pink[i] := true
report no cycle 15  for all # in NEXT-STATE](s) do
proc dfs_blue(s,i) 16 if t.colorli]=cyan .
Q. 17 report cycle & exit all
s.colorli] = cyan . .
. b 18 if —z.pink[i] A —t.red
for all 7 in NEXT-STATE/(s) do :
) ) i i 19 dfs_red(z,i)
if r.color|i]=whiteN—t.red .
i 20 ifseF
dfs_blue(z,i) .
itse 21 s.count ‘= s.count — 1
s e 22 await s.count = 0
s.count = s.count + 1 .
o dls.i 23 s.red = true
s_red(s. ) 24 s.pink[i] = false

s.colorli] = blue
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on reductio ad absurdum. Instead, the following proof solely relies on invariants that
always hold, independent of the program counters or at certain lines (pre- and post-
conditions). The main correctness result in follows directly from these
invariants.

We use the following notations: The sets White;, Cyan;, Blue; and Pink; contain all
the states colored white, cyan, blue, and pink by worker i, and Red contains all the red
states. E.g., s.color[i] = blue, we write s € Blue;. It follows from the assignments of
the respective colors to the color variable that White;, Cyan; and Blue; are disjoint. We
distinguish between normal refurn and termination (exit all).

The Hoare triple {P} C {Q} [Hoa69] style notation expresses two facts at once:
(1) If pre-condition P holds before calling C, then post-condition Q holds upon return
of C, and (2) always when C is called, the pre-condition P holds. Whenever a function
reaches a report statement, it terminates after reporting, i.e. there is no normal function
return, making any post-condition vacuously true. Finally, we use the modal operator
s € OX to express that V € NEXT-STATE(s): 1 € X.

Definition A.1 (Pre-condition mc_ndfs). me_ndfs adheres to the specification: {|J; Blue; =
U; Cyan; = J; Pink; = Red = O \\J; White; = S} mec_ndfs(sy) {...}

First, we present a few basic lemmas that allow us to reason precisely on the behavior
of the DFs.

Lemma A.1 (Pre-/post-conditions dfs_blue (1)). dfs_blue adheres to:
{3C C S: Cyan; = C \s & Cyan;} dfs_blue(s,i) {Cyan; = C}

Proof. Only at|Line [2| and |Line |8} dfs_blue(s, ) can be called. At|Line [2} by Defini-
Cyan; = 0, hence s & Cyan;. At[Line[8] by the condition at[Line[7} s € White;,
hence s & Cyan;. Also, at the start of dfs_blue(s,7), we have 3C C S: Cyan; = C. We
show by induction on the number of nested dfs_blue calls n of worker i that[Lemma AT
holds with this C.

e n=1: If Cyan; = C at|L | then after Line[5] Cyan; = CW {s}. Since n =1,
Line[8] was not reached, hence also at[C Line |9} Cyan; = CW{s}. This also holds
after [Cine[TT] since no states are removed or added from Cyan; in dfs_red. So

Cyan, — (C& {s}) \ {s} = C after
e n=n'+1: Assume holds for n’ nested dfs_blue calls of worker i.
We show that it also holds for call n’ + 1. If Cyan; = C at [Line |5} then after

ILine 5| Cyan; = CW {s}, and by the induction hypothesis, also after )
Cyan, = (C {s})\ {s} — C after

O



Lemma A.2 (Pre-/post-condition dfs_blue (3)). dfs_blue adheres to the specification:
{s & (Blue; U Cyan;)} dfs_blue(s,i) {s € Blue;}

Proof. dfs_blue is only called at|Line 2| and [Line[8] At|Line(s} 1 € White;, hence ¢t &

(Blue; U Cyan;), and at [Line 2] by [Definition A.1] s; & (Blue; U Cyan;). Finally, by
ILine|12| s € Blue; when dfs_blue returns. O

Lemma A.3 (Pre-/post-condition dfs_red (1)). dfs_red adheres to the specification:
{3P C S: Pink; = P A\s & Pink;} dfs_red(s,i) {Pink; = P}

Proof. Only at[Line[T1] and [Line[19] dfs_red(s, i) can be called. At[Line[I9] by the
condition at[Cine[I8] s ¢ Pink;. At[Line[4] by [Definition A:T] Pink; = 0. At[Line[TT]
still Pink; = 0, since Pink; is only changed in dfs_red, hence s ¢ Pink;. Also, at the start
of dfs_red(s, i), we have 3P C S: Pink; = P. We show by induction on the number of
nested dfs_red calls n of worker i that[Cemma A_3|holds with this P.

e n = 1: If Pink; = P at|Line[T4] then after[Line[l4] Pink; = P\ {s}. Since n = 1,
was not reached, hence also at [Line 23] Pink; = P\ {s}. So Pink; =

(Pw{s})\ {s} = P after[Line[24]

e n=n'+1: Assume holds for n’ nested dfs_red calls of worker i.
We show that it also holds for call n’ + 1. If Pink; = P at[Line[14} then after
Pink; = PW{s}, and by the induction hypothesis, also after[Line[T9] so
Pink; = (Pw{s})\ {s} = P after[Linc 4]

O

The following lemma expresses the fact that during the (local) blue search, no red
search is active.

Lemma A.4 (Pre-/post-condition dfs_blue (2)). dfs_blue adheres to the specification:
{Pink; = 0} dfs_blue(s,i) {Pink; =0}

Proof. First we prove by induction on the number of nested dfs_blue calls n of worker i
that (1) {3P C S: Pink; = P} dfs_blue(s,i) {Pink; = P}. Then, we show that P = 0.
At the start of dfs_blue(s, i), we have: 3P C S: Pink; = P.

e n=1: If Pink; = P at[Line[3] then since n = 1, [Cine[§] was not reached, hence
also at[Cine[9] and by Cemma A_3]after[Cine[T1} Pink; = P.

e n=n'+1: Assume (1) holds for n’ nested dfs_blue calls of worker i. We show
that it also holds for call ' + 1. If Pink; = P at L then by the induction

hypothesis, also at[Cine[9] and by [Cemma A3|after [Cine[T1} Pink; = P.




[Ehapter 5

Finally, by \J; Pink; = 0 at so P = 0 for all dfs_blue calls at
Furthermore, if Pink; = P at[Cine[5} then also Pink; = P at|Cine[8]for all nested
dfs_blue calls. Hence P = @ for all dfs_blue calls. O

Starting at the following lemma, the notation mc_ndfs(s,i) @n refers to Line n in

the code of mc_ndfs in [ATgorithm 5.3}
Lemma A.5. mc_ndfs(s,i) @0} s € O(Blue;UCyan; URed) is an invariant of Mc-NDFs.

Proof. At|Line[9] we know for all 1 € NEXT-STATE; (s) that either (1) t & White; V't € Red,
or (2) dfs_blue(z,i) was executed atsince at|Line[7| t € White; Nt & Red. If (1),
then either ¢ ¢ White;, hence t € (Blue; U Cyan;), ort € Red, hence t € (Blue; U Cyan; U
Red). If (2), then after [Line [8] by [Lemma A.2| t € Blue;, hence t € (Blue; U Cyan; U
Red). O

Lemma A.6. Invariantly in Mc-nDFs, for all workers, the successors of blue states are
either Red, or Blue or cyan for the same worker: Vi: Blue; C O(Blue; U Cyan; URed).

Proof. Only at[Cine[I2] a state s is added to Blue;. By [Lemma A.5| at[Line[9] for all
t € NEXT-STATE;(s), we have t € (Blue; U Cyan; URed). We can show that a state is never
removed from Blue; U Cyan; U Red. First of all, once set to true (Line[23)), s.red is never
set to false. Therefore, a state s is never removed from Red. Second of all, s.color|i] is
never set to white, hence a state s € (Blue; U Cyan;) is never removed from Blue; U Cyan;.

Hence 7 € (Blue; U Cyan; U Red) also at O
Lemma A.7. mc_ndfs(s,i)@23|-24} s & O(Cyan;) is an invariant of Mc-NDFs.

Proof. By contradiction. Say that s € O(Cyan;) at Then there must exist
t € NEXT-STATE; (s) with # € Cyan;. Since dfs_red does not add states to Cyan; (Line|19),

we also have r € Cyan; at[Cine[T5] But then, the condition at[Cine[I6]holds, and[Cine[I7]
is reached, therefore[Cine[24]cannot have been reached, and we have a contradiction. ]

We can now reason over the color of states that dfs_red visits.

Lemma A.8 (Pre-/post-conditions dfs_red (2)). dfs_red adheres to:
{s € O(Blue; U Cyan; URed) \s € (Blue; U Cyan;)} dfs_red(s,i) {s € Red}

Proof. By induction on the number of nested dfs_red calls n by worker i. dfs_red is
only called at[Line[l I{and|Line|19}

e n = 1: hence this dfs_red(s, i) must have been called at in dfs_blue(s, ).
Say that at [Line [5} Cyan; = C. Then after [Line [5} Cyan; = CW {s}, and by



Lemma A.1] also after [Line[8] Cyan; = Cw{s}. Hence at[Line[T1] s € Cyan;,
so s € (Blue; U Cyan;). Furthermore, by [Lemma A.5| at[Line |9} s € CJ(Blue; U

Cyan; URed). This also holds at|Line|11}

e n=n'+1: Assume holds for ’ nested dfs_red calls of worker i. We
show that it also holds for call n’ + 1. This dfs_red(s,i) must have been called

at There, by the induction hypothesis, ¢ € (Blue; U Cyan; U Red), and

t & Red at|Line|18] hence t € (Blue; U Cyan;) at|Line[19} By[Lemma A.7|and the
fact that Cyan; is not changed in dfs_red, t ¢ Cyan; at|Line |19} hence ¢ € Blue;,

therefore, by [Lemma A.6| t € O(Blue; U Cyan; URed).
Finally, by s € Red after[Line[23} O

The red search thus only visits states that are blue or cyan. This is not surprising, as
the red search happens after the blue search backtracks and takes into account the cyan
stack of the blue search. As a consequence, red states also have these colors:

Lemma A.9. Invariantly in Mc-NDFs, red states are also blue or cyan for some worker:
Red C J;(Blue; UCyan;).

Proof. Only at s is added to Red by worker i. At[Cine[I3} by [Lemma A.§]
s € (Blue; U Cyan;). A state is never removed from Blue; U Cyan;, since s.color|i] is
never set to white. Hence, also at|Line[23| s € (Blue; U Cyan;). O

A basic property of DFs is that successors of backtracked states are also backtracked
or are still on the stack. The following lemma expresses this fact for the red search,
which also takes into account the cyan stack of the blue search.

Lemma A.10. Invariantly in Mc-nDFs, successors of red states are either red or pink
for some worker, but in the latter case, never cyan for that same worker:

Red C O(Red UJ;(Pink; \ Cyan;)).

Proof. Only at s is added to Red by worker i. At we know for all
! € NEXT-STATE; () that either (1) ¢ € Pink; V't € Red, or (2) dfs_red(t,i) was executed
at[Cine[T9]since at[Cine[T8} 1 & Pink; At & Red. And (3), t & Cyan; by [Lemma A7] If
(1), then either ¢ € Pink; \ Cyan;, ort € Red, hence t € Red U\ J;(Pink; \ Cyan;). If (2),
then after[Cine[19] by [Cemma A8 ¢ € Red.

We can also show that a state s is never removed from Red U|J;(Pink; \ Cyan;). A
state is never removed from Red. It may be removed from Pink; \ Cyan,; at (by
removing pink) or at (by marking a pink state cyan). However, at s is
already red by and by the pre-condition of [Cemma A.4]a new cyan state cannot
be already pink. Hence s € Red U|J;(Pink;) after[Line[24] and [Line[5] O
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Corollary A.1. mc_ndfs(s,i)@R20]: s € O(Red U (Pink; \ Cyan;)) is an invariant of
mc_ndfs.

Proof. Tt follows from the proof[Lemma A.10} that s € J(Red U Pink; \ Cyan;) at
This also holds at[Cine[20] (the statements between those lines do not modify the color

sets). O]

Lemma A.11. Invariantly in Mc-NDFs, pick states are blue or cyan for the same worker:
Vi: Pink; C (Blue; U Cyan;).

Proof. After[Line[14] s € Pink;, and by[Lemma A.8| s € (Blue; U Cyan;). Since s.color]i]

is never set to white, a state is never removed from Blue; U Cyan,;. O

Lemma A.12. Invariantly in Mc-nDFs, successors of pink states are red, or cyan or
blue for the same worker: i: Pink; C O(Blue; U Cyan; URed).

Proof. When coloring a state s pink at in dfs_red(s,i) for some worker i, by
s € O(Blue; U Cyan;URed). Furthermore, a state s € (Blue; U Cyan; URed)
is never removed from Blue; U Cyan; URed, because s.color][i] is never set to white, hence
a state s € (Blue; U Cyan;) is never removed from Blue; U Cyan;, and t.red is never set
to false, hence a state t € Red is never removed from Red. O

Lemma A.13. Invariantly in Mc-nDFs, blue accepting states are also red:
Va € F:ae€|J;Blue; = a € Red.

Proof. A state is never removed from Red. Furthermore, only at a state is
added to Blue; by some worker i. If s € F, after[Cine[T1] by [Cemma A8 s € Red. [

Accepting states are special in the red search: The search is always launched starting
from an accepting seed and never visits any other accepting state. This basic insight
was used in [Cou+92|| to proof the algorithm correct. Of course here we require more
detailed lemmas to ensure that the synchronization between parallel workers does not
affect this property negatively. Indeed it does not:

Lemma A.14 (Pre-/post-conditions dfs_red (4)). Forall a € F, dfs_red adheres to the
specification: {Pink; =0} dfs_red(a,i) {Pink; =0}

Proof. Only at|Line[l I{and |Line[19|can a dfs_red be called. First, we show by contra-
diction that dfs_red(a, i) cannot be called at[Line[I9] Say that dfs_red(a,i) is called at
[Line[19)in some dfs_red(s, i) with @ € NEXT-sTATE(s). Then, at[Line[13] by[Lemma A 8]
a € (Blue; U Cyan; U Red). Since a € F, by [Lemma A.13| a € (Cyan; URed). If

a € Cyan;, the condition in [Line[I6] holds for a, hence is reached, so
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is not reached, and we have a contradiction. If a € Red, then the condition in |[Line [18]
does not hold, hence [Line[19]is not reached, and we have a contradition.

At[Cine ] by Definition A.T] Pink; = 0. At[Cine[T] still Pink; = 0, Pink; is only
changed in dfs_red, and by [Cemma A.3] at[Cine[12} also Pink; = 0. O

Corollary A.2. mc_ndfs(s,i) @20} s € F = Pink; = {s} is an invariant of Mc-NDFs.

Proof. After [Line [24] since s € F, by [Lemma A.T4] Pink; = 0. Therefore, before

Pink; = {s} (s € Pink; at[Line[14]and [Line 23| by [Lemma A_3). O

Lemma A.15. Invariantly in Mc-nDFs, pink accepting states that are not yet red are
cyan for the same worker (they are on the stack of both the blue and the red search, until
the latter backtracks): Yi: a € F Na € (Pink;\ Red) = a € Cyan,.

Proof. Since a € Pink;, by[Lemma A.11| a € (Blue; U Cyan;). In fact, a & Blue;, since
if a € Blue;, by a € F and also a € Red, which is not the case. Hence
a € Cyan;. O

Lemma A.16. mc_ndfs(s,i) @20} s € F = s € O(Red) is an invariant of Mc-NDFs.

Proof. By|Corollary A.2| Pink; = {s}. [Corollary A.I|then only allows: s € (J(Red U

{s}) (a self loop over s). However, s € Cyan; by [Lemma A.15| contradicting
lary A.1|(s & Cyan;). Therefore, this self loop cannot exist and we have: s € CJ(Red).

O

In the following lemmata, the notation s ZRe¢ *7 is used to indicate that the path
does not contain any red state. Similarly, s 7”& ¥ denotes a path that contains only
pink states.

Lemma A.17. Invariantly in Mc-NDFs, for the same worker, all cyan states can reach
all pink states: Vi,c € Cyan;, p € Pink;: Ja € F N Pink;: ¢ =% a =" p.

Proof. At|Line|SfLine |12} a successor state is added/removed to/from Cyan;, thus for
all states cy,cp € Cyan, we have a path c| % *cp. There are yet no Pink; states
(Lemma A.4).

Pink; states can only be introduced by invoking dfs_red at[Cine[T1] There, dfs_red
is called for a € F, which are immediately colored Pink; at[Line[T4 By[Cemma A.13]
also a € Cyan,. Then,[Cemma A T7|holds with p = a =c.

In dfs_red(s, i), dfs_red is only called for t € NEXT-STATE(s) at [Line [19] when, by
s € Pink;. As long as a dfs_red(z,i) is not finished, also # € Pink; by [Line[14]
This shows that for all p € Pink;, there exists a path a fL"kg *p. Since the cyan states are
connected, we also have ¢ —* a —* p. ]
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The counter on accepting states ensures that they are not marked red prematurely
(while some red search is still busy):

Lemma A.18. Invariantly in Mc-nNDFs, pink accepting states are non-red, except when
all works have decremented the state’s counter and are waiting for the counter to be-
come 0: Vi,a € F (Pink;: a & Red \ dfs_red(a,i) @24

Proof. Before a € F is colored pink by dfs_red(a,i) at [Line 14} its counter is first
incremented at[Line[T0|because by [Corollary A.2|the dfs_red call was made at[Line[TT]
Hence, Pink; = {a}. The counter can only be decremented by where again
Pink; = {a} by Thus only after the decrement of the counter, we can have
a € Red, but at that same time a is about to be uncolored pink, because we have dfs_red

(a,))@Z4] O

Lemma A.19. The following invariant holds for Mc-NDFs:

Vs € Red,a € F\Red,: s —" a = (3i,p € Pinkj,c € Cyan;: p “Red *¢)

(For all red states with a path to a non-red accepting state, there is some path from a
pink to a cyan state of the same worker without red on it)

Proof. Assume towards a contradiction that s —* a for some s € Red, a € F and a o4
Red. Let s’ € Red be the last red state on the path s —* a. Then, since s’ # a, it has a
successor ¢ € Red in this path. By[Lemma A-T0} we obtain ¢ € Pink; for some worker i,
solet p:=t.

Note that ¢ # a, otherwise by[Cemma A.T3]r € Cyan, and by[Lemma AT0|r & Cyan;.
So we find another successor ¢’ such that s —* s’ — ¢t — ¢’ —* a. Assume towards a
contradiction that no state on the path t’ —* ais in Cyan;; recall that t' —* a contains no
Red states either (we started from the las? red state s’ on the path). Then by[Lemma A.12}
all states on #' —* a are in Blue;. But then also a € Blue; and by[Lemma A.13] a € Red,
a contradiction. So there exists a ¢ € Cyan; with s —* p =T ¢ —* a.

It is easy to demonstrate that the invariant is not invalidated when pink and cyan
states are removed. When p' is uncolored at[Line[24] we have p’ € Red by for
which the invariant holds (with s = p’). When a state is removed from cyan at|Line E
there are no pink states by and the conclusion of the invariant was already
invalid.

Also the addition of a red state cannot invalidate the invariant. First of all, if the red
state is the accepting state, the premise of the invariant no longer holds. In all the other
cases, we have a new last red state on the path s =1 a. O

In the following, we reason on the graph module red states and show that any con-
figuration of the colors in this subgraph will lead to eventual detection of an accepting
cycle if there exists one. This is necessary, a stronger invariant on red states, such as



“red states do not lie on accepting cycles” does not hold, as shows. B’
represents B after the removal of red states, i.e. for B = (S,s;, NEXT-STATE, F ), we
define B’ = (§', s}, NEXT-sTATE', F'), with &' = S\ Red, s} = SIIEI, NEXT-STATE (s) =
NEXT-STATE(s) \ Red, and F' = F \ Red. State colorings are affected in a similar way,
e.g. Pink} = Pink; \ Red.

Lemma A.20. The following invariant holds for Mc-NDFs:

Vae F:sj—*aha—ta= 3d € F': sy —»*d —T d' V3i,p € Pinkj,c € Cyan|: p 2Red *¢
(The biichi automaton sans red states contains a reachable accepting cycle or a non-red

path from a pink state to a cyan state for some worker).

Proof. Several cases can be identified upfront:

1 at[Cine[T2] a state is removed from Cyan;,

2 at|Line[24] a state is removed from Pink;, and

3 at[Cine[23] a state is colored Red.

In Case 1, no path p 2R¢¢ *¢ with p € Pink; and ¢ € Cyan; is removed, because at

[Cine[12] there are no Pink; states (Cemma A.4).
In Case 2, at[Line[24] s is removed from Pink;. By the state is already red

and could not be part of the non-red path.

For Case 3, we have two sub cases: Case 3a, when the state s marked red is on an
accepting cycle (3a € F: a =T s —T a), and Case 3b, when the state s marked on a
path p “Red *s ~Red *¢ with p € Pink; and ¢ € Cyan..

Case 3a: Firstnote that s # a, because all successors of a must be red (Cemma A.16)),
hence there can be no path a ﬁ;’ *a. Therefore, after Line 23l we have s =1 a with
s € Red and a & Red. From this path and [Lemma A.19] it follows that there is a path
p ~Red ¢ for some p € Pink; and ¢ € Cyan;, which satisfies[Lemma A.ZOI

Case 3b: assume that s € 7w with 7 = p 2Red *¢, p € Pink; and ¢ € Cyan;. State
s is about to be colored Red. We witness that there must be an a” € Pink; N F such
that ¢ —* @’ —* p (Cemma A.17). It does not matter whether a = a”, we either have
d" ¢ Red or dfs_red(d” i) @24] by In the former case, we have a path
s —T a" (again s # ") with a € F and s € Red, and from |[Lemma A.19|it follows that
there is a path p 2R¢d ¢ for some p € Pinkjand ¢ € Cyan j» which satisfies|Lemma A.20
In the latter case, the state a” € F N Pink; is about to be uncolored pink by worker ;.
By [Corollary A.2| Pink; = {a"}, therefore p = d” contradicting the assumption that
p Red *c. O

1'We assume here that s; & Red. If this is not the case, B\ Red is a graph consisting of 0 states.
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Lemma A.21 (Post-condition mc_ndfs). mc_ndfs adheres to the specification:
{...} me_ndfs(s;) {U; Cyan; = \J; Pink; = O A\Vx: s; =T x = x € |J;Blue;}

Proof. Only at[Line[J] a state s is colored cyan by some worker i in dfs_blue(s, ). After
all blue Drss are finished, hence also dfs_blue(s, i), and by [Lemma A2} s €
Blue;, therefore s & Cyan;. Furthermore, after[Cine[2] for all i, by[Cemma A.3| Pink; = 0,
i.e. |J; Pink; = 0. For all workers i, after [Cine[2} by [Cemma A.2} s; € Blue;. Finally,
by [Cemma A.6|and |J; Cyan; = 0, Blue; C O(Blue; U Cyan; U Red) = O(Blue; URed).
By [Lemma A.9|and |; Cyan; = 0, Blue; C [)(Blue; U\, Blue;) = OJ; Blue;. Hence,
if s7 —=* x then x € |J; Blue;. O

Theorem A.1 (Correctness Mc-NDEs). After mc_ndfs is finished, it holds that: C =
report error < Jac F.s; > aNa—" a

Proof. We split C as follows: C =C— ANC— = C(C; <= (, and prove it in parts
(C—, C—. are the necessary and sufficient conditions).

C——: We show that -C; = —(C,, which implies C; = C. First, assume that
—C}. Then, mc_ndfs(s;,N) returns normally (no exit all). We show by contradiction
that —C, holds. Assume C,, then there exists an a € F such that s; =* aAa —T
a. By[Lemma A21] a € |J; Blue;, and since a € F, by a € Red. Fi-
nally, by [Lemma A.20} either there exists another @’ & Red with ¢’ —* a’ contradicting
[Lemma A.21|and|[Lemma A.13] or there exists a path p — ¢ for some i, p € Pink; and
¢ € Cyan;. However, by [Lemma A.21|, \J; Pink; = 0, so p cannot exist, hence we have a
contradiction.

C_.: We consider it sufficiently obvious that dfs_red(s, i) implies the exis-
tence of an accepting run, because of the stacks of the DFss. [

The above proof shows partial correctness of Mc-NDFs. For complete correctness
it is required that the algorithm is guaranteed to terminate. If dfs_red terminated,
we can conclude termination of dfs_blue from the fact that for each worker i the set
Blue; U Cyan; grows monotonically (blue is never removed). Eventually, all the states
are in the set and the blue search ends. The same cannot immediately be concluded for
dfs_red, because of the await condition at[Cine[22} Termination of this waiting state,
however, follows from the following basic observations: (1) every worker i can have at
most one outstanding pink flag on an accepting state (a € F € Pink;), which is unset
at[Cine[24] before entering the waiting state, hence when worker 7 is waiting, there can
be no other worker is waiting for i. Furthermore, also the shared set Red U Pink; grows
monotonically, guaranteeing a completion of all red DFss in a finite amount of time.



Proofs for

B.1 Correctness Proof and Corollaries for Ndfs

In the current section, we provide a correctness proof for plain Nprs with cyan color
for cycle detection (Algorithm B.T). This proof serves an independent and thorough
demonstration of some corollaries about the algorithm which we used in
While these corollaries can be drawn from papers on the algorithm, cf. [Cou+92;|SE05],
the algorithms are slightly different and the proofs are more informal. We state these
additional corollaries at the end, and use them to explain the algorithm more intuitively.
Because the proof is written in the context of timed automata, we use the abstracted
transition relation = instead of the normal relation —, but the two are interchangeable,
because we do not consider subsumption yet.

As in we use the modal operator in, e.g. s € (JX to express that
NEXT-STATE(s) C X. The set [1X can thus be interpreted as all states that only have suc-
cessors in X: X = {s € S | NexT-sTATE(s) C X }. The Hoare triple {P} C {Q} [Hoa69]
style notation expresses two facts at once: (1) If pre-condition P holds before calling
C, then post-condition Q holds upon return of C, and (2) always when C is called, the
pre-condition P holds. Whenever a function reaches a report statement, it terminates
after reporting, i.e. there is no normal function return, making any post-condition vacu-
ously true. We prove our propositions by doing induction over the number of execution
steps. If, for example, we prove that successors of blue states are either blue or cyan, it
suffices to show that this holds (1) before the algorithm starts (when all states are white)
and (2) after execution of each line where either blue or cyan is modified, assuming that
it held before. [Theorem B.2] and [Theorem B.3| prove [Algorithm B.Is soundness and
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Algorithm B.1 Nprs with cyan color for cycle detection

1: procedure NDFs 10: procedure dfsBlue(s)
2: Cyan := Blue := Red := 0 11: Cyan := CyanU {s}
3 dfsBlue(so) 12: for all 7 in NEXT-STATE(s) do
4: report no cycle 13: if r ¢ Blue Nt ¢ Cyan then
s. procedure dfsRed(s) 14: dfsBlue(r)
6: Red := Red U {s} 15: if s € F then
7: for all 7 in NEXT-STATE(s) do 16: dfsRed(s)
8: if 1 € Cyan then report cycle (7. Blue := Blue U {s}
9: if 7 & Red then dfsRed(t) 18: Cyan := Cyan\ {s}
completeness (Algorithm T10.1]is a copy of that algorithm).
uses separate color sets instead of a multi-valued color variable as
ine.g. It is however rather easy to see that the correctness of the latter

follows from the former as illustrates.
Lemma B.1 (Pre-/post-conditions dfsBlue). In the following pre- and

post-conditions hold:
{Cyan = C N\s & (Blue U Cyan)} dfsBlue(s) {Cyan = C As € Blue}

Proof. dfsBlue(s) is only called on white states by|Line[2/and|Line|13] hence s ¢ Blue U
Cyan. By induction on the number of dfsBlue calls, we show that Cyan = C for some
C C S holds upon return of dfsBlue, if Cyan = C at call time.

n=1: dfsBlue(s) is called at for s ¢ Cyan by|Line[2|and|Line|13| Let Cyan =C
at|Line |11} so after [Line|I1} we have Cyan = C'¥{s}. Because |[Line [14]is not
called, we have Cyan = CW {s} at[Line[l18|and Cyan = CW {s}\ {s} = C after.

n=n'+1: Assume[Lemma B.1]holds for n’ nested dfsBlue calls. We show that it also
holds for call n’ + 1. If Cyan = C at[Line[T1] then after[Line[T 1} Cyan = Cw {s},
and by the induction hypothesis, also after|Line|14] so Cyan = (CW{s})\ {s} =C
after [CinelTTl

Before dfsBlue(s) returns, we have s € Blue at O

Lemma B.2. In[Algorithm B.1| successors of blue states are blue or cyan:
Blue C O(Blue U Cyan).

Proof. Initially, Blue is empty and the proposition holds. States are colored blue at
[Line[T7} at which point all successors # have been considered at[Line[13H14] If # € Blue U
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Cyan, then dfsBlue(r) is executed adding 7 to Blue by the post-condition of

States are only removed from cyan at[Line[T8] but after being colored blue at[Line[I7]
O

Corollary B.1. [Lemma B.2| holds for s at[Line[I7} so at[Line]I3]also:
s € O(Blue U Cyan).

Lemma B.3. In[Algorithm B.1| when dfsRed is finished, then all red states have red
successors.: Red C [JRed.

Proof. Follows from induction on red searches initiated at which perform
reachability on non-red states. O

Lemma B.4. The red search visits only blue states except for the (cyan) seed.

Proof. The search at[Line[I@]starts at the seed s € F N Cyan (by[Line[ITJand[Cemma B.T]
with s € O(Blue U Cyan) (Corollary B.1)). Before the recursive dfsRed call at[Line[9]

if a successor ¢ of s is Cyan, [Algorithm B.T]|terminates at[Line[8] Hence, ¢ € Blue at
Line 9 O

Corollary B.2. All red states are blue or cyan:
Red C (BlueU Cyan).

Proof. 1If a red search was launched at (s € F), states visited by dfsRed are
colored red at|Line |6} By|Lemma B.4] the red search only visits blue states except for
the seed s, which is cyan. Because states are never removed from Blue U Cyan (only

from cyan at[Cine[I8] but this is after the state is added to blue at [Cine[T7), always:
Red C (BlueU Cyan). O

Lemma B.5. when dfsRed is finished, red states have blue, non-cyan
successors: Red C O(Blue\ Cyan).

Proof. By [Corollary B.1| we have s € (J(Blue U Cyan) for the initial dfsRed call at
[Line|16] By|Lemma B.4|and|[Lemma B.2| we have t € OJ(Blue U Cyan) for the recursive
dfsRed call at|Line[9] So always s € OJ(Blue U Cyan) at|Line[6] If a successor r € Cyan
at|Line[8} [Algorithm B.1|terminates, so: s € OBlue \ Cyan once dfsRed returns.

Cyan states can only be added in during the blue search. Assume |Line|l 1] colors
a state ¢ cyan, while its predecessor s € Red. By also 7 € Red. Hence by

Corollary B.2} ¢ € Blue U Cyan, contradicting Therefore, Red C [(Blue \
Cyan). O

Lemma B.6. In[Algorithm B.1| invariantly, blue accepting states are red.:
BlueN F C Red.
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Proof. A state s € F is marked blue at There, we have s € Red because[Linel6]

happens before|Line[l7]if s € F (see[Line[l5). O
Lemma B.7. ensures that blue accepting states never lie on accepting

cycles: Blue N JF N Cycle = 0.
Proof. At[Line[l7] a state s € F is colored blue. By[Cemma B.6| we must already have

s € Red. Also, s € Cyan by|Line|l 1|and |Lemma B.1} Assume towards a contradiction
that a cycle s =7 s exists. By induction on the length of the cycle, using Red C [IRed
from[Cemma B.3] the immediate predecessor 7 of s on the cycle has to be red. However,

with s € Cyan, contradicting O

The following theorems demonstrate the algorithm’s correctness, because it always
terminates with a report: A cycle report entails that the graph contains an accepting
cycle (soundness) and a no cycle report entails that the graph does not contain an ac-
ceptance cycle.

Theorem B.1 (Termination). [Algorithm B.1|always terminates with a report.

Proof. The color set Blue U Cyan continuously grows, as only states are added to it
(except cyan states which are only remove after being colored blue). This reduces the
(finite) number of successors that have to be considered at|Line|[14]and|Line[9} There-
fore, both dfsRed and dfsBlue eventually return, including the initial dfsBlue call at

generating a report at[Cine[d] Unless a cycle is reported earlier at[Cine[8] O

Theorem B.2 (Soundness). reportcycle —> Jac F:so=>"a="a

Proof. By property of the pFs stacks: If a red search, started from an accepting seed
s € F at|Line |16} finds a path to a state s’ on the cyan stack, there is a path s’ =* s.
Therefore, there is an accepting cycle: so =* s =1 5/ =* . O

Theorem B.3 (Completeness). report no cycle =—> Aac F:so=*a="a

Proof. At[Line[] sy € Blue by and Cyan = 0 (always [Line[T8] after [Line[TT).
By all states are blue, hence no accepting cycle exists by[Cemma B.7} [

The following corollaries illustrate the working of the Nprs algorithm more intu-

itively: For each accepting state (Corollary B.4), a red search is launched to find a path
back to the cyan stack closing the accepting cycle. Th search may ignore states visited by

previous red searches (red states) as these do not lead to accepting cycles
making the algorithm linear.

Corollary B.3. At[Line[I3| Red C Blue.
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Proof. [Cemma B 4] and [Cine[T7|happens after the initial dfsRed call at[Cine[T6] O

Corollary B.4. The red search visits one single accepting state: the seed.

Proof. The search starts at in a cyan seed s and then visits only blue states

at[Cine ] (Cemma B-4). Assuming that it also visits some 7 € F with s # ¢, we have
t € Red by[Lemma B.6| contradicting the condition 7 ¢ Red at[Line[9] O

Corollary B.5. Outside of dfsRed, no red state leads to an accepting cycle.

Proof. Outside of dfsRed, we have Red C [JRed by [Lemma B.3] Assume towards a
contradiction that there exists a state s € Red that leads to an accepting cycle. By
we have Red C OBlue. By induction on the lasso from s, we learn that
the cycle is both blue and red. However, this contradicts[Cemma B.7] O

Corollary B.6. dfsRed is not dependent on DFS order, it can be implemented with any
reachability algorithm (that marks visited states red).

Corollary B.7. The correcmess of{Algorithm 3.2]follows from the correctness of{Algo-]
[rithm B1)

Proof. The blue and cyan sets are disjoint except at From
it follows that the color red may override blue and cyan (as happens at and
[Cine[9)in[Algorithm 5.2)). Care has to be taken however that the converse override does
not happen (see [Cine[18] and [Cine [20] in [Algorithm 5.2), and red is also interpreted as
blue/cyan (see[Cine[T4]in [Algorithm 5.2). O
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B.2 Correctness Proof for Ndfs with Subsumption

In the current section, we prove[Algorithm B.2|(a copy of correct, using
the same notations as in|Section B.I|and also reusing some of the previous lemmas. In

fact, we only repeat those lemma that required modification now that subsumption is
added to the algorithms. Because we use subsumption, the abstracted transition relation
= is used, instead of the normal relation — (the two are no longer interchangeable).
Notice that the algorithm now avoids red states during the blue search as this might
prune the search space

As in we write s C S to express subsumption checks on sets, meaning
Is'€S: sCs'. AndSLC s, meaning 35’ € S: 5’ C 5. We write Xc for all states subsumed
by states in X: Xz = {s| s C X}, i.e. all states that have equal or less behavior than X.
We also write X+ for all states that subsume states in X: X5 = {s | X C s}, i.e. all states
that have equal or more behavior than X.

Algorithm B.2 Nprs with subsumption

1: procedure NDFs() 10: procedure dfsBlue(s)

2 Cyan := Blue := Red := 0 11: Cyan := CyanU{s}

3 dfsBlue(so) 122 for all 7 in NEXT-STATE(s) do

4 report no cycle 13: if (t € BlueU Cyan At IZ Red)
5. procedure dfsRed(s) 14: then dfsBlue(r)

6 Red := Red U {s} 15: if s € F then

7 for all 7 in NEXT-STATE(s) do 16: dfsRed(s)

8 if Cyan C t then report cycle .. Blue := Blue U {s}

9: if ¢ IZ Red then dfsRed(t) 18: Cyan := Cyan\ {s}

Lemma B.8 (Pre-/post-conditions dfsBlue). Next to the pre- and post-conditions of
[Lemma B.1| |Algorithm B.2|also ensures that dfsBlue is not called on states subsumed
by red: {s & (Redc)} dfsBlue(s) {}

Proof. dfsBlue(s) is only called on white states by and on states not subsumed
by red by Hence, s € Redr. O

Lemma B.9. In successors of blue states are blue, cyan or subsumed
by red: Blue C J(Blue U CyanU Red).

Proof. Initially, Blue is empty and the proposition holds. States are colored blue at

ILine |17} at which point all successors ¢ have been considered at [Line 13| Ifr g



Blue U Cyan U Red then dfsBlue(t) is executed adding ¢ to Blue by the post-condition

of States are only removed from cyan at[Line[T8] but after being colored
blue at[Cinell7l O

Corollary B.8. [Lemma B.9 holds for s at[Line[I7] so at[Line[I3]also:
s €C O(Blue U Cyan U Redr).

The following shows, that the red search never breaches the bounds of the blue
search (the cyan stack). If the blue search where to employ subsumption, this would not

be the case, as shown in

Lemma B.10. A pre-condition of dfsRed(s) is that s € Blue U Cyan and that all suc-
cessors of s are either blue or cyan, or subsumed by red:

{s € CyanUBlue N\ s € O(Blue U Cyan URedr)} dfsRed(s) {s € Red \s ¢ OCyan }.
While a post-condition is that s is red and its successors do not subsume cyan states.

Proof. By induction on the number of dfsRed calls, we show that the pre-conditions
hold.

n = 1: The initial dfsRed call must be from with the seed s € F N Cyan (by
[Line|11|and [Lemma B.1). Also, s € (Blue U CyanURedr) by|Corollary B.8

n=n'+1 The nth dfsRed(r) call must be from Assume that for the previous
n'th cal, we have s € O(Blue U Cyan U Red). We consider the successors ¢ of
s, which are all processed at @ﬂ Therefore, t € (BlueU Cyan URed:). Any
t € Redr it is discarded by If t € Cyan, then terminates

at Hence, € Blue at[Line 0] for the nth call. And by [Lemma B.9] 7 €
O(Blue U Cyan U Red).

The post-condition holds by and the fact that states are never uncolored red.
In both cases of the induction, dfsRed s) terminates when a successor ¢ € Cyan-,.

Because the red search does not change the cyan set, we have s ¢ [ICyan— upon return
of dfsRed. O

Corollary B.9. As states are never removed from Blue U Cyan nor from Red, it follows

from that: Red C (Blue U Cyan).
Lemma B.11. In when dfsRed is finished, then states subsumed by red

states have successor subsumed by red states:

{Redr C ORedr } dfsBlue(s) {Red- C ORedc}.



[Ehapter i)

Proof. We have s € Red by [Line[f|and red states are never uncolored red. For all recur-
sive calls at[Cine[J]s € Red by the post-conditions of[Cemma B.T0} Otherwise, r € Redc
by Therefore, s € Red NORedr upon return of dfsRed. The fact that subsump-
tion C is a simulation relation (Proposition 10.1)) ensures that for states s’ C s, also
s' € ORed-. Hence, Red C URedc if dfsRed is completed. O

In the following lemma, the notation dfsBlue(s)@n refers to Line n in the code of

Alo B

Lemma B.12. when dfsBlue returns, red states have non-cyan succes-
sors: dfsBlue(s)@[17| = Redc NOCyan = 0.

Proof. A state s can only be marked red in dfsRed (s). It is never uncolored red. Upon
its return, s € Red and s ¢ (0Cyan— by Because the red search does not
tamper with the set of cyan states, we have Red N JCyan— = @ up on completion of the
red search, when the control flow returned to|Line|l/} B

Only the blue search can color states cyan. Assume there is some state r € Red,
whose successor s is colored cyan at [Line [I1] By |Lemma B.11] we have s € Red,
contradicting

It follows that Red N[1Cyan— = @. By the fact that C is a simulation relation (Propo-|
[sition TO.T), we also have: Red= NTCyano = 0. Or intuitively: if red states have no
successors subsuming cyan states, all states with less behavior than the red states, can

also not subsume cyan states. O
Lemma B.13. ensures that blue accepting states never lie on accepting

cycles: Blue N\ JF N Cycle = 0.

Proof. At[Line[T7] a state s € F is colored blue. By[Cemma B.6| we must already have

5 € Red. Also, s € Cyan by[Line[T1]and [CLemma B.8] Assume towards a contradiction
that a cycle s =7 s exists. By induction on the length of the cycle, using
we find that the whole cycle must be subsumed by red. Therefore, also for the prede-
cessor 5" of s on the cycle, such that s’ = s, we have s’ C Red. With s € Cyan, this
contradicts O

The following theorems demonstrate the algorithm’s correctness, because it always
terminates with a report: A cycle report entails that the graph contains an accepting
cycle (soundness) and a no cycle report entails that the graph does not contain an ac-
ceptance cycle.

Theorem B.4 (Termination). [Algorithm B.2|always terminates with a report.



Proof. The color sets Red and Blue U Cyan continuously grows, as only states are added
to it (except cyan states which are only remove after being colored blue). This reduces

the — by finite — number of successors that have to be considered at
Line[T4] and [CineP] Therefore, both dfsRed and dfsBlue eventually return, including

the initial dfsBlue call at[Line[3] generating a report at[Line[d Unless a cycle is reported
earlier at[Line &} O

Theorem B.5 (Soundness). reportcycle —> Jac F:so=*a="a

Proof. By|Line[8] we now find a path: sy =* s =% s’ s.t. s C s containing an accepting

state on the path s =T s/. By [Lemma 10.2} this implies the existence of an accepting
cycle. O

Theorem B.6 (Completeness). report no cycle =— fac F:so=*a="a

Proof. By induction on the length of the path so =* s, to any reachable state s,, using
Lemma B.9|and |Corollary B.9} we show first that s C Blue. For this we also use the fact

that at[Cine ] Cyan = 0 by [Cine[?| and [Cemma B8]

n=0: At[CineH] so € Blue by[Line[3]and the post-condition of

n=n'+1: Assume s, € Blue. By its successor must be: s, € (Blue U

Redr), because Cyan = 0. If s, € Red, then 35’ Js: s € Red. By|Corollary B.9
also s’ € Blue, because Cyan = 0. Therefore, s, C Blue.

Hence, all reachable states are subsumed by blue.

Now we consider all reachable accepting states a € F, again at It holds
that a C Blue, in other words, there exists another accepting state @’ € Blue, such that
aCd. By a,d € F. Assume, a lies on a cycle. Since a’ € Blue,

it does not lie on an accepting cycle according to This contradicts with
the contraposition of [Lemma 10.1] which transliterates as: If s’ does not lead to an
accepting cycle, then any s C 5" does also not lead to an accepting cycle. O
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B.3 Correctness Proof for Cnprs with Subsumption

In the current section, we prove the parallel (a copy of
correct, using the same notations as in|Section B.2|(also the same preliminary remarks

apply). We again reuse the notations from and also use the subsumption
lemmas from that chapter. A proof for the version without subsumption was presented
in The exact parts in the lemmas and proofs that changed is underlined here
(except for the cases where we use the abstracted transition relation =, instead of the
normal relation —).

Algorithm B.3 Multi-core CNDFS with subsumption on Red and over Cyan

1: procedure cNDFs(P) 13: procedure dfsBlue;(s)

2: Blue := Red :=0 14: Cyan; := Cyan; U {s}

3 foralliin 1..P do Cyan; :=0 15: for all 7 in NEXT-STATE;(s) do

4 dfsBlue, (so)||..||dfsBluep(so) 16: if ¢ ¢ Cyan; UBlue At Z Red then
5 report no cycle 17: dfsBlue,(t)

6: procedure dfsRed,(s) 18:  Blue := Blue U {s}

7 Ri:=R;U{s} 19: if s € F then

8 for all 7 in NExT-STATE;(s) do  20: Ri=0

9 if Cyan C t then 21: dfsRed(s)
10: report cycle 22: await Vs’ € R;NF\ {s}: s’ C Red
11 if 1 ¢ RiAt Z Red then 23 forall s’ in R; do Red := Red Us'
12: dfsRed;(t) 24: Cyan; := Cyan; \ {s}

Lemma B.14. States subsumed by red have successors subsumed by red: Red- C [lRed-.

Proof. Initially, there are no red states, hence the lemma holds.

States are colored red when dfsBlue, @23 and are never uncolored red. The set of
states R, that is colored at contains all states reachable from the seed s, but
not yet subsumed by red, since dfsRed p(s) performed a DFES from s over all states not
subsumed by red. For the states subsumed by red and reachable from s, the induction
hypothesis can be applied, hence there are states subsumed by red that are reachable
from s that are not in R ,. As a consequence, always Red C [Red.

The fact that subsumption C is a simulation relation (Proposition 10.1)) ensures that
for states s’ C s with s € ORed, also s’ € ORedr. Hence, it holds that Red C CRed.

O




Lemma B.15. At[Line[22] the set R, invariably contains (1) the seed s, (2) all non-red
states reachable from s and also (3) all states in the set are reachable from the seed s:
dfsBluep(s)@é (SER,N(VS €Redr: s="s' =5 €eR,)N(Vs" e Rp = s ="
S//)).

Proof. At[Line[7} we have s € R,,. For the rest, see proof of O

Lemma B.16. The only accepting state that can be colored red at|Line[23|(for the first
time) is the current seed s itself: dfsBlue,(s @. (RpNF)\Redc C {s}.

Proof. Assume dfsBlue ,(s)@23|and Ja € (F\ {s}) :a € R,,. We show thata € Redr.

By[Cemma B.T5] R, contains at least s and the states reachable from s and not sub-
sumed by red. After|Line|22] all non-seed accepting states in R, are subsumed by red:
(RpN(F\{s})) € Redc. Since,a € R,N(F\{s}), we have: a € Red. O

Proposition B.1. The initial invocation of dfsRed),(s) at|Line|21|of |Algorithm B.3|re-
ports a cycle if and only if the seed s belongs to a cycle.

Proof. & is split into two cases:

Case =: Every state s’ € Cyan p can reach the seed from dfsBlue @.by proper-
ties of the DFS stack. Similarly, when dfsRed ,(s") @10} s” 3 Cyan is reachable from
the seed s. Therefore, there is a path: s =* s J for some s Jc € Cyan and ¢ =" s.

By[Lemma 10.2] there is an accepting cycle.

Case «: assume dfsRed ,(s) at|Line 21| finishes normally (without cycle report),
while s lies on a cycle C. We show this leads to a contradiction. Since dfsRed avoids only
states subsumed by red (Line[TT), there would have to be some r € C N Redr obstructing
the search. In other words, there is a state 7 C r such that ¥ € Red. The state 7 can only
have been colored red at|Line[23 |by some worker. W.l.o.g. we investigate the ﬁrst worker
dfsRed,, to have colored r' red. p’ started for an s’ € F (dfsBlue

Slnce ¥ is not yet red, by [Lemma B.14|C N Redr = 0. Before ris colored red it is
first stored in 7?, . By[Lemma B. 15|, we also have C C RQ Either there is some s” € C
such that s’ C s” , then the cycle through s” would have been detected since s” € Cyan,,
(use contraposition [Lemma 10.1). Or else there is no such s” € C, and then we have
{s} C (R, \ Redc) when dfsBlue , (s') @23] contradicting[Lemma B.16] O

Proposition B.2. Red states never subsume an accepting cycle.

Proof. Initially, there are no red states, hence the proposition holds.

When dfsBlue p(s) @123 the set of states R, is colored red. The only accepting state
to be colored red is the seed s (Lemma B.16)). By [Proposition B.1} this state s does not
lie on an accepting cycle. Hence, is preserved.
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It follows that there is no state subsumed by s, i.e. s’ C s, which does lie on an
accepting cycle. Otherwise, we would have a contradiction with the contraposition of
[Cemma 101l which transliterates as: If s does not lead to an accepting cycle, then any
s C 5" does also not lead to an accepting cycle. O

Lemma B.17. Blue states have successors that are blue, subsumed by red, or cyan for
some worker p: Blue C |J,0(Blue U Cyan,URedr ).

Proof. Initially there are no blue states, hence the lemma holds.

Only at states are colored blue, after each successor ¢ has been skipped
at (t € Cyan, U BlueURedr), or processed by dfsBlue,, at (leading to
t € Blue). States can be uncolored cyan (Line[24)), but only after they have been colored
blue (Cine[T8). O

Lemma B.18. A blue accepting state, that is not also Cyan,, for some worker p, must
be red: Ya € (BlueNF): (Vpe{1...P}:a ¢ Cyan,) = a C Red.

Proof. Assume s € (F N Blue) and Vp € {1...P} :s ¢ Cyan,,. We show that s C Red.

State s can only be colored blue when dfsBlue ,(s) @18, There, it still retains its cyan
coloring from|[Line|14] it only loses this color at[Line[24] But, since s € F,|Line[23|was
O

reached and there a € R, by Hence, s C Red at[Line[24]

Proposition B.3. Algorithm I always terminates with a report.

Proof. The individual DFSs cannot proceed indefinitely due to a growing set of red and
blue states, and the fact that we only consider finite abstractions [Proposition 10.3} So
eventually a cycle (Line[I0) or no cycle is reported (Line[5). However, progress may
also halt due to the wait statement at[Line[22] We now assume towards a contradiction
that a worker p is waiting indefinitely for a state a € F to become subsumed by red:
dfsBlue,, (s) s#aand a € R,. We will show that either a will be subsumed by
red eventually, or a cycle would have been detected, contradicting the assumption that
p keeps waiting.

By aisreachable froms: s =" a. And by s € Blue. Induction

on the path s =" a, using [Lemma B.17| tells us that: either all states are blue (1), or
there is a cyan state on this path (2), or there is a state subsumed by red on this path (3):

1. a€BluenvVpe{l...P}:a ¢ Cyan,: by [Lemma B.18} a € Red, which con-

tradicts the assumption that p is waiting for a to become red. (Note that Ip’ €
{1...P}: a € Cyan, is handled in Case 2.)

2. deeCyany s =7 ¢ =* a, then depending on the identity of worker p’, we have:



A) p=p': but then dfsRed ,(s) would have terminated on cycle detection (C =
s =T ¢ =7 s), except when dfsRed ,» did not reach ¢ in presence of a red

state subsuming C. However, this would contradict

B) p # p’: we show that either p’ is executing or going to execute dfsRed b (a).
To eventually color state a red, worker p’ must not end up itself in a waiting
state: dfsBlue,y(a’) @ First, consider the case a # a’. We also have s =
c =*d (stack Cyan,). Hence, by@ also a’ € R,. Therefore,
we can assume w.l.0.g. that @ = &’ and only consider dfsBlue ,(a) @ We
can repeat the reasoning process of this proof, with p = p’ and s = a. But
since there are finitely many workers, the chain of processes waiting for
each other eventually terminates, except the hypothetical configuration of a
cyclic waiting dependency, which we consider finally.

3. By induction on the length of the path, using[Cemma B.T4] we learn that a C Red.
Contradicting the assumption that p is waiting for a.

To exclude cyclic dependencies, assume n > 2 workers are simultaneously waiting
for each other’s seed to be colored red at We have: dfsBlue; (s;)@22A--- A
dfsBlue,,(sn)@/\ 52 € RiA---As; €R,. This is only possible if s; = s, A--- A
sy =7 s1, hence there is a cycle: s; =T ... =T 5, =1 5;. However, this contradicts
that the red DFSs (which terminate anyway) would have detected this cycle (Proposi-|

tion B. 1) O
Theorem B.7. reports an accepting cycle if and only if one is reachable
Sfrom sy.

Proof. By the algorithm is guaranteed to terminate with some report,

forming the basis for two cases:
Case = dfsRed,,(s) @[10]implies that there is an accepting cycle according to[Propo]

Case <= (consider the entire case underlined): At[Cine[3] we have sy € Blue and
Vpe{l...P}: Cyan, =0 by|Line 18and by properties of DFS.

By induction on the length n of the path, so = s,,, using[Lemma B.17|and[Lemma B.14]
we show that all reachable states s, are red or blue: s, € (Blue URedr).

n=0: At[Line[] so = s,. Therefore, so,s, € Blue.

n=n'+1: Assume s, € (BlueURedc). If s,y € Blue, by [Lemma B.9| its successor
must be: s, € (Blue U Redr ), because the cyan sets are empty. If s,/ € Redr, by

ILemma B.14] its successor must be: s, C Red.



Proofs for|Chapter 10

Hence, all reachable states are blue or subsumed by red.
Now we consider all reachable accepting states a € F, again at[Cine[] If a € Blue,

then also a C Red by [CLemma B.T8] So all accepting states are subsumed by red: F C
Red. By [Proposition B.2] it follows that there are no accepting cycles. O

This concludes correctness of
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Samenvatting

Onze moderne samenleving is in toenemende mate afhankelijk van de correcte werking
van digitale systemen. Het is geen triviale exercitie om te garanderen dat deze systemen
ook werkelijk correct volgens hun specificatie functioneren. Toch is dit essentieel voor
systemen die van levensbelang zijn, zoals een automatische piloot, kerncentrale en de
ABS in uw auto.

De hoogste mate van vertrouwen die we kunnen verkrijgen in de correctheid van een
systeem, is via wiskundig bewijs. Dit is een arbeidsintensief proces waarbij het gedrag
van het systeem eerst formeel beschreven wordt en daarna geanalyseerd wordt. Vooral
die laatste stap is tijdrovend en vereist de creativiteit van een wiskundige om te demon-
streren dat bepaalde eigenschappen blijven gelden onder de strikte wiskunderegels. Met
de ontdekking van ‘model-checking’ is die laatste taak helemaal geautomatiseerd door
het gedrag van het systeem met een computer volledig te doorzoeken.

Desondanks wordt de grootte van de systemen die we kunnen ‘model-checken’ sterk
beperkt door de hoeveelheid beschikbare rekenkracht. De oorzaak hiervan is de zo-
geheten toestandsexplosie, die ontstaat doordat deze automatische aanpak alleen maar
kleine gemechaniseerde stappen kan maken en niet zoals de wiskundige beschikt over
de creativiteit om generaliserende (denk)stappen te maken. Daarom is het doel van dit
proefschrift om de volledige rekenkracht van moderne multikerncomputers te benutten
voor de model-checking-taak (vandaar “multi-core’). De parallelle procedures die wij
presenteren, benutten alle beschikbare processorkernen, en behalen een versnelling die
proportioneel is aan het aantal kernen, oftewel ze zijn schaalbaar (vandaar “scalable”).

Dit proefschrift bereikt de efficiénte parallelisatie van een breed scala aan model-
checking-procedures in drie stappen, elk beschreven in een deel van het proefschrift:

Ten eerste passen we lockless hashtabellen aan voor ‘explicit-state reachability’, het
onderliggende zoekalgoritme dat de volledige toestandsruimte van een systeem door-



zoekt. Met behulp van een boom (een bepaald soort datastructuur) realiseren we toe-
standscompressie, wat leidt tot een significante reductie van de hoeveelheid aan ge-
bruikt geheugen. Incrementele wijzigingen in deze boom zorgen voor vergelijkbare
performance en schaalbaarheid als de lockless hashtabel, terwijl de combinatie met een
compacte hashtabel het geheugen kan comprimeren tot ongeveer 4 bytes per toestand,
zelfs bij de opslag van meer dan 10 miljard states. Empirisch bewijs laat zien dat de
compressie heel vaak binnen de 110% van dit optimale geval ligt.

Ten tweede hebben we parallelle ‘nested depth-first search’-algoritmen ontwikkelt
om model-checking van LTL in lineaire tijd te ondersteunen. Voortbordurend op de
resultaten van onze algoritmen voor multikern-reachability laten we meerdere proces-
sen semi-onafhankelijk van elkaar door de toestandsruimte zoeken. Deze techniek is
gebaseerd op zwerm-achtige (‘swarm-based’) verificatie methoden, die lage commu-
nicatiekosten uitbuiten door gebruik te maken van een mogelijk redundante planning
(‘scheduling’) van het werk. Daarom vormt deze methode een mogelijke oplossing voor
een toekomstscenario waarin communicatiekosten groeien met de toenemende steilheid
van de geheugen hiérarchie in computer systemen. Experimenten op huidige hardware
tonen al aan dat deze methode weinig overbodig werk verricht en ook nog goed schaalt.

Ten derde, om uiteindelijk ook de verificatie van real-time systemen te ondersteu-
nen, hebben we onze oplossingen voor de multikern-zoekalgoritmen en het checken van
LTL vertaald naar het domein van ‘timed-automata’. We hebben daarvoor een lockless
‘multimap’ ontwikkeld, die toestanden met tijd abstractie kan opslaan. Ook presenteren
we algoritmen die kunnen omgaan met de grove subsumptieabstractie voor de verifica-
tie van LTL-eigenschappen, en daardoor grotere probleeminstanties kunnen oplossen.
De schaalbaarheid, geheugencompressie en performance worden allemaal behouden in
de setting waaraan tijd is toegevoegd. Experimenten laten daarom grote vooruitgang
zien in vergelijking tot de state-of-the-art model-checker upPaaL.

De bovenstaande technieken zijn allemaal geimplementeerd in de model-checker
LTSmin. Deze is taal-onafhankelijk en leent zich daardoor uitstekend voor directe ver-
gelijking met andere model-checkers. We presenteren experimentele vergelijkingen met
de state-of-the-art expliciete model-checkers spiN en DIVINE. Beide implementeren
multikern-algoritmen, terwijl DIVINE ook de focus legt op gedistribueerde verificatie.
Deze experimenten tonen aan dat de voorgestelde technieken significante vooruitgang
bieden in termen van schaalbaarheid, absolute performance en geheugengebruik.

Huidige trends en voorspellingen vertellen ons dat het aantal processorkernen ex-
ponentieel toe zal nemen met de tijd (Moore’s Law). Onze resultaten zijn mogelijk in
staat te profiteren van deze trend. Of de voorgestelde methoden ook werkelijk de tand
des tijds zullen doorstaan blijft nog maar de vraag, maar vooralsnog heeft de versnelling
van onze algoritmen de 3-voudige vermeerdering in het aantal kernen kunnen bijhouden
gedurende de 4 jaren van dit onderzoek.
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