UNIVERSITY OF TWENTE.
Formal Methods & Tools.

Guard-based Partial-Order Reduction in LTSmin

Alfons Laarman, Elwin Pater,
Jaco van de Pol, Michael Weber AN
8 july 2013

SPIN'13, Stony Brook

duction LTSmin

Implementation

LTSmin Tool Architecture (1

(1)

Specification mCRL2 Promela DVE UPPAAL
Languages
| ! . !
PINS = = ¥m s mm e m ¥ o e e n T v
: : |
ey ' v '
Reachability Distributed Multi—core Symbolic
Tools

UNIVERSITY OF TWENTE.

Guard-based Partial-Order Reduction in LTSmin

8 july 2013 2/ 16

juction LTSmin Theory POR Implementation Experiments

LTSmin Tool Architecture (1)

Specification mCRL2 Promela DVE UPPAAL
Languages
| ! . !
PINS = = Yo e e e e Yo T oY
| | :
ey ' v '
Reachability Distributed Multi—core Symbolic
Tools

Functionality

> On-the-fly detection of errors: deadlocks, actions, invariant violations

On-the-fly LTL model checking for liveness (Nested DFS)

>

» Symbolic model checker for CTL*, full y-calculus

> State space generation, bisimulation minimization, export
>

State and edge labels support timed and stochastic systems

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

Introduction LTSmin

LTSmin Tool Architecture (2)

Specification | gy Promela DVE UPPAAL
Languages
1 1
PINS = = Yo = = = = S) A
1 1
v v
Pins2pins Transition Variable reordering Partial-order
Wrappers caching Transition grouping reduction
1 1
1 1
PINS === o R
| | |
- v v v
Reachability Distributed Multi—core Symbolic
Tools

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 3 /16

Introduction LTSmin N ation Experiments
00800

PINS interface

Partitioned Interface for Next States:

» States are partitioned into vector of /N state variables

» The next-state function is partitioned into M transition groups
» Show locality: N x M dependency matrix (hopefully sparse)
> indicates which state parts each transition group depends on

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 4 /16

Introduction LTSmin °OR Implementation Experiments Conclusion
00800

PINS interface

Partitioned Interface for Next States:

» States are partitioned into vector of /N state variables

» The next-state function is partitioned into M transition groups
» Show locality: N x M dependency matrix (hopefully sparse)
> indicates which state parts each transition group depends on

On-the-fly access to the state space via an API:

Three basic functions

> INIT-STATE(): returns the initial state vector
» NEXT-STATE(i,s): successors of state s in transition group i
» GET-MATRIX: returns the dependency matrix Dy«

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 4 /16

Introductlon LTSmin e ’OR \mp\ mentation Experiments Conclusion
oleY o)

Dependency I\/Iatrlx caching and regrouping

global int x=7;
process pl1() {

do

x>0 > x--;y++}
i {x>0 > x——;z++}
od }

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 5/ 16

Introduction LTSmin ntation xperiments Conclusion
[SeleY Yol

Dependency Matrix: caching and regrouping

global int x=7; global int y=3; global int z=9;
process pl1() { process p2() { process p3() {

do do do

i {x>0 > x——;y++} | i {y>0 > y——;x++} | :{z2>0 -> z-—;x++}
i {x>0 > x——;z++} | :{y>0 > y——;z++} | :{z>0 -> z——;y++}
od } od } od }

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin

8 july 2013 5/ 16

Introduction LTSmin
00080

Dependency Matrix: cachin

Experiments

global int x=7;
process pl1() {

do

i{x>0 -> x—-;y++}
i {x>0 > x--;z++}
od }

Process Matrix

X y z
pl [+ + +
p2 |+ + +
p3 |+ + +
In general:
using r/w/+

UNIVERSITY OF TWENTE.

global int y=3;
process p2() {

do

2 {y>0 > y-—;x++}
2 {y>0 -> y-—;z++}
od }

Guard-based Partial-Order Reduction in LTSmin

g and regrouping

global int z=9;
process p3() {

do

::{z>0 -> z-——;x++}
::{2>0 -> z——;y++}
od }

8 july 2013 5/ 16

Introduction LTSmin Theo
00080 e

Dependency Matrix:

caching and regrouping

global int x=7;
process pl1() {

do

i{x>0 -> x—-;y++}
i {x>0 > x--;z++}
od }

Process Matrix

X y z X y z
plLT+ + +7) pll1[+ + -]
p2 |+ + + pl2 |+ — +
p3 |+ + + p2.1 |+ + -
p22 | — + +
In general: p3.1 |+ — +
using r/w/+ p32 |- + +]

global int y=3;
process p2() {

do

2 {y>0 > y-—;x++}
2 {y>0 -> y-—;z++}
od }

Refined Matrix

UNIVERSITY OF TWENTE.

Guard-based Partial-Order Reduction in LTSmin

global int z=9;
process p3() {

do

::{z>0 -> z-——;x++}
::{2>0 -> z——;y++}
od }

8 july 2013

5/ 16

Introduction LTSmin
00080

Dependency Matrix:

global int x=7;
process pl() {

do

x>0 > x--;y++}
x>0 > x--;z++}
od }

Process Matrix

global int y=3;
process p2() {

do

2:{y>0 > y-—;x++}
::{y>0 > y--;z++}
od }

Refined Matrix

global int z=9;
process p3() {

do

1:{z>0 -> z-—;x++}
2:{z>0 -> z-—;y++}
od }

init state = (7,3,9)

x y z X y z (7,3,9) 213 (6,4,9)
pl [+ + +|| pLL [+ + -] (7,3,%) 23 6,4, %)
p2 |+ + + pl2 |+ — +
p3 |+ + + p21 |+ + - p3.2

p22 | — + + <7>3)9> pT; <7747 >
In general: p3.l |+ — + (%,3,9) 5 (x,4,8
using r/w/+ P32 - + + cache short transitions

enable symbolic means

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin

8 july 2013

5/ 16

Introduction LTSmin
00080

Dependency Matrix: caching and regrouping

global int x=7; global int y=3; global int z=9;
process pl1() { process p2() { process p3() {
do do do
x>0 > x-—;y++} | i {y>0 > y-—;x++} | 1 {z2>0 > z--;x++}
i {x>0 > x——;z++} | :{y>0 > y——;z++} | :{z>0 -> z——;y++}
od } od } od }
Process Matrix Static Regrouping
X y z X y z X y z
pl [+ + + pll [+ + —] pl1,21 |+ + -—
p2 |+ + + pl2 |+ — + pl.2,31 |+ — +
p3 |+ + + || p21 |+ + - p2.2,32 | — + +
p22 |- + +
In.general: p3li+ — + > Less overhead
using r/w/+ p32 | — + +
. - » Better structure

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

Introduction LTSmin *OR ntation
0000e

Table of Contents

Introduction LTSmin
m LTSmin Tool Architecture
m PINS Interface

Theory
m Basis: Stubborn Sets
m Guard Based POR
m Necessary Disabling Sets

Implementation

m Language Module Extensions
T m Algorithm to find small Stubborn Sets
m POR and LTL model checking

ﬂ\' Experiments
< V.

Conclusi
:;,fﬂ onclusion

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

| tion LTSmin Theory POR Implementation Experiments Conclusion

Partial-Order Reduction (Godefroid,Valmari)

Main idea of partial-order reduction

» Avoid exploring all transition interleavings

> Select sufficient subset of enabled transitions
» don't destroy conflicting transitions

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8july 2013 7/ 16

| ion LTSmin Theory POR n entation Experiments Conclusion

Partial-Order Reduction (Godefroid,Valmari)

Main idea of partial-order reduction

» Avoid exploring all transition interleavings

> Select sufficient subset of enabled transitions
» don't destroy conflicting transitions

Necessary Enabling Sets (NES)

» |f transition « is not enabled in state s, then

» NES(«,s) is some necessary enabling set
> it contains a transition from each path to «

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8july 2013 7 /16

| on LTSmin Theory POR Implementation Experiments Conclusion

Partial-Order Reduction (Godefroid,Valmari)

Main idea of partial-order reduction

» Avoid exploring all transition interleavings

> Select sufficient subset of enabled transitions
» don't destroy conflicting transitions

Necessary Enabling Sets (NES)

» |f transition « is not enabled in state s, then

» NES(a,s) is some necessary enabling set
> it contains a transition from each path to «

Algorithm to compute a Stubborn Set

Select an arbitrary enabled transition in T,
Repeat, for each a € Ts:

If o enabled: add all conflicting transitions 8 to T
If o disabled: add all transitions in some NES(a,s) to Ts

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8july 2013 7/16

Theory POR \mplt mentation Experiments Conclusion

Atomic transitions: gi(X) A - - Agn(X) — X =t
Extend PINs with a function to evaluate guards

Define all notions on guards rather than transitions

» guards x > 0 and x < 5 may be co-enabled MC(g1,82)

> guards x = 0 and x > 5 cannot be co-enabled

» guards pc = 3 and pc = 5 cannot be co-enabled

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 8/ 16

ction LTSmin Theory POR \mplt mentation Experiments Conclusion

Innovatlon 1: Guard-centric approach

Atomic transitions: gi(X) A - - Agn(X) — X =t
Extend PINs with a function to evaluate guards

Define all notions on guards rather than transitions

» guards x > 0 and x < 5 may be co-enabled MC(g1,82)

> guards x = 0 and x > 5 cannot be co-enabled

v

guards pc = 3 and pc = 5 cannot be co-enabled
How to enable a guard pc =37 NES(g1)
» Add all transitions that assign pc := 3

v

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 8/ 16

Theory POR \mpl mentation Experiments Conclusion

Atomic transitions: g1(X) A -+ A ga(X) — X 1=t
Extend PINs with a function to evaluate guards

Define all notions on guards rather than transitions

» guards x > 0 and x < 5 may be co-enabled MC(g1,82)

> guards x = 0 and x > 5 cannot be co-enabled

» guards pc = 3 and pc = 5 cannot be co-enabled

» How to enable a guard pc =37 NES(g1)
» Add all transitions that assign pc := 3
> An update x := 5 conflicts with guard x +y =2z DNA

» An update v := 5 doesn't conflict with guard x + y = z

» An update x := x + 1 doesn’t conflict with guard x +y > z

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 8/ 16

Theory POR \mpl mentation Experiments Conclusion

Atomic transitions: g1(X) A -+ A ga(X) — X 1=t
Extend PINs with a function to evaluate guards

Define all notions on guards rather than transitions

» guards x > 0 and x < 5 may be co-enabled MC(g1,82)

> guards x = 0 and x > 5 cannot be co-enabled

» guards pc = 3 and pc = 5 cannot be co-enabled

» How to enable a guard pc =37 NES(g1)
» Add all transitions that assign pc := 3
> An update x := 5 conflicts with guard x +y =2z DNA

» An update v := 5 doesn't conflict with guard x + y = z

» An update x := x + 1 doesn’t conflict with guard x +y > z

Program counters or process locations are treated
no different than just any other state variable

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 8/ 16

n LTSmin Theory POR N ation Experiments

00e0

Innovation 2: Necessary Disabling Sets

Py P>
b OV Ty » Assume (t1, t7) and (te, t7) are conflicting
// » Typically, NES works backwards:
tye -t o » Fat stubborn set: {t, t>...5, tg, t7}
ts 2

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 9/ 16

tion LTSmin Theory POR ntation Experiments Conclusion

00e0

Innovation 2: Necessary Disabling Sets

Py P>

Keeping stubborn sets small

owa, me T » Assume (t1, t7) and (ts, t7) are conflicting
y » Typically, NES works backwards:
‘ » Fat stubborn set: {t, t>...5, tg, t7}

, » Note: t; and ts may not be co-enabled
tel| » Disabling t; is necessary to enable tg:
» {t1, te, t7} is a sufficient stubborn set

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

tion LTSmin Theory POR mentation Experiments Conclusion
0080

Innovation 2: Necessary Disabling Sets

Py P>

Keeping stubborn sets small

owa, me T » Assume (t1, t7) and (te, t7) are conflicting
y » Typically, NES works backwards:
‘ » Fat stubborn set: {t, t>...5, tg, t7}
y » Note: t; and ts may not be co-enabled
tel| » Disabling t; is necessary to enable tg:
» {t1, te, t7} is a sufficient stubborn set

Necessary Disabling Sets

» So, how to find an necessary enabling transition for a7

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

on LTSmin Theory POR Implementation Experiments Conclusion

Innovation 2: Necessary Disabling Sets

Py P>

Keeping stubborn sets small

owa, me T » Assume (t1, t7) and (te, t7) are conflicting
y » Typically, NES works backwards:
‘ » Fat stubborn set: {t, t>...5, tg, t7}
y » Note: t; and ts may not be co-enabled
tel| » Disabling t; is necessary to enable tg:
» {t1, te, t7} is a sufficient stubborn set

Necessary Disabling Sets

» So, how to find an necessary enabling transition for a7
» Disable any enabled transition § that is not co-enabled with «

» NDS([3,s) contains some transition necessary to disable /3

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 9/ 16

Theory POR ntation
oooe

Table of Contents

Introduction LTSmin
m LTSmin Tool Architecture
m PINS Interface

Theory
m Basis: Stubborn Sets
m Guard Based POR
m Necessary Disabling Sets

Implementation

m Language Module Extensions
T m Algorithm to find small Stubborn Sets
m POR and LTL model checking

ﬂ\' Experiments
< V.

Conclusi
:;,fﬂ onclusion

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

tion LTSmin Implementation Experiments Conclusion
000

Language Module Extensions

What every language must provide

» Dependency Matrix for state variables and guards DM
» distinguish read/write dependencies

» Matrix to report conflicting transitions DNA

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 11 /16

on LTSmin Theory POR Implementation Experiments Conclusion

Language Module Extensions

What every language must provide

» Dependency Matrix for state variables and guards DM
» distinguish read/write dependencies

» Matrix to report conflicting transitions DNA
Optional improvements for more reduction

> Necessary Enabling Sets for guards NES

> Necessary Disabling Sets for guards NDS

» May-be Co-enabled matrix on guards MC

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 11 /16

POR Implementation Experiments Conclusion
000

Language Module Extensions

What every language must provide

» Dependency Matrix for state variables and guards DM
» distinguish read/write dependencies

» Matrix to report conflicting transitions DNA
Optional improvements for more reduction

> Necessary Enabling Sets for guards NES

> Necessary Disabling Sets for guards NDS

» May-be Co-enabled matrix on guards MC

» All matrices can be approximated by static analysis

v

A good default can be computed for the optional information

v

We did extend the language modules for Promela and DVE

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 11 /16

LTSmin T POR Implementation Experiments Conclusion

Heuristics for fiﬁding Stubbéfn Sets

Implementation of Stubborn Sets

» Heuristics to choose stubborn set with minimum costs

> enabled transitions more expensive than disabled transitions
> transitions that were selected already come for free

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

Introduction LTSmin T POR Implementation Experiments

Heuristics for finding Stubbéfn Sets

Implementation of Stubborn Sets

» Heuristics to choose stubborn set with minimum costs

> enabled transitions more expensive than disabled transitions
> transitions that were selected already come for free

» This is sufficient for reachability /deadlock
» for the sequential + parallel algorithms

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 12 / 16

n LTSmin ory POR Implementation Experiments

Heuristics for finding Stubb&n Sets

Implementation of Stubborn Sets

» Heuristics to choose stubborn set with minimum costs

> enabled transitions more expensive than disabled transitions
> transitions that were selected already come for free

» This is sufficient for reachability /deadlock
» for the sequential + parallel algorithms

Extra implemented provisos (Holzmann, Peled)

» Incorporated extra features in algorithm + language module:

» Extra: provide visibility information
» Extra: implemented several cycle provisos

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 12 / 16

tion LTSmin °OR Implementation Experiments Conclusion

Heuristics for finding Stubb&n Sets

Implementation of Stubborn Sets

» Heuristics to choose stubborn set with minimum costs

> enabled transitions more expensive than disabled transitions
> transitions that were selected already come for free

» This is sufficient for reachability /deadlock
» for the sequential + parallel algorithms

Extra implemented provisos (Holzmann, Peled)

» Incorporated extra features in algorithm + language module:

» Extra: provide visibility information
» Extra: implemented several cycle provisos

» This is sufficient for LTL model checking
» only for the sequential algorithms

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 12 / 16

Int on LTSmin The POR Implementation Experiments Conclusion

The Tower of PINS Layers: LTL with POR

system spec property ¢

ching the PINS interface

» Get new transitions on-the-fly

M,DM, DNA, MC, NE > request from upper layer
L ¥ » call-back on each successor

[Fransiton cadhe] .
T » POR layer needs extra info:
PiNg ------- bmq----- L o
M, DMy | ! DNA, MC, NES » visibility from Biichi product
L v » cycle-proviso from NDFS

’ Partial-order reduction ‘

PINS =-=-=-=---- l— - :‘:5 - -
Mg, — J/ | “| Vis
PINg -=------ -
Mg x By : ,' stack proviso
v

’ NDFS emptiness check ‘

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 13 / 16

on LTSmin The POR Implementation Experiments Conclusion

The Tower of PINS Layers: LTL with POR

system spec property ¢

Stretching the PINS interface

» Get new transitions on-the-fly
M,DM, DNA, MC, NE > request from upper layer

L ¥ » call-back on each successor

[Fransiton cadhe] .
T » POR layer needs extra info:
PiNg ------- bmq----- L o
M, DMy | ! DNA, MC, NES » visibility from Biichi product
L v » cycle-proviso from NDFS

’ Partial-order reduction ‘

ys
e
efined Proviso's
Mg,—1 ' \Vis
» Cycles: color proviso
LTL crossprofuct . .
: » Valmari, Evangelista
Mg x By | ! stack proviso > Visibility: atoms as guards

et > Reuse en/dis-abling info
’ NDFS emptiness check ‘ > Dynamic (per state)

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

Experiments

Experimental Results

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

Experiments

Experimental Results

46 DVE models from BEEM database

» Compare stubborn sets versus ample sets (theory):

» Reduce more than best possible ample set (Geldenhuys)
» Heuristics for selecting stubborn sets are very effective
» Necessary Disabling Sets can help as well

B T

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

Intr ion LTSmin T POR Implementation Experiments Conclusion

Experimental Results

46 DVE models from BEEI\/I database

» Compare stubborn sets versus ample sets (theory):
» Reduce more than best possible ample set (Geldenhuys)
» Heuristics for selecting stubborn sets are very effective
» Necessary Disabling Sets can help as well

A\

— : o
16 Promela models, up to 50M states, 250M transitions
» Compare stubborn sets (LTSmin) with ample sets (SPIN)
» LTSmin por provides more reduction than Spin por

» Spin's partial-order reduction is more efficient in time
» LTSmin requires less memory (reduction + state compression)

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 14 / 16

Intrc on LTSmin °OR Implementation Experiments Conclusion

Experimental Results

46 DVE models from BEEI\/I database

» Compare stubborn sets versus ample sets (theory):
» Reduce more than best possible ample set (Geldenhuys)
» Heuristics for selecting stubborn sets are very effective
» Necessary Disabling Sets can help as well

— — \Z
16 Promela models, up to 50M states, 250M transitions
» Compare stubborn sets (LTSmin) with ample sets (SPIN)

» LTSmin por provides more reduction than Spin por
» Spin's partial-order reduction is more efficient in time
» LTSmin requires less memory (reduction + state compression)

POR combined with LTL model checking

» Guard-based dynamic visibility proviso pays off

» Subtle cycle proviso's (Valmari, Evangelista) pay off

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 14 / 16

Experiments

120.0%

States

100.0%

80.0%

60.0%

40.0%

20.0%

0.0%

NIVERSITY OF TWENTE. ard-based Partial-Order Reduction in LTSmin

SPIN

LTSmin

july 2013

Experiments

120.0%

States
100.0%
80.0%
60.0%
SPIN
40.0% LTSmin
20.0%
0.0% e B —— L
QK g IR
RN .@“o q’@o(\ ‘@63 &.«
g 5 8 &
& ¢ L
80 N 1,000
" Runtime (sec) Memory (MB, log scale)
60 100
50
40 10
30
20 1
10

NIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin july 2013

Experiments Conclusion

Specification | gy o Promela DVE UPPAAL
Languages
I I | I
PINS - = ¥ - - - - - L JUpED N A Sy
I I I
v v v
Pins2pins Transition Variable reordering Partial—order
Wrappers caching Transition grouping reduction
I I I
PINS == = oo e oo At e --t o
! ! !
. v v v
Reachability Distributed Multi—core Symbolic
Tools

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 16 / 16

n LTSmin

Why join the LTSmin project?

Experiments

End users: profit without changing modeling language

Spec > Probably the best scalable model checker up to 48 cores

Conclusion

AL
Lang » economic with memory (lossless compression, por reduction)
» supports major modeling languages: SPIN, UPPAAL, mCRL2
I I I
v v v
Pins2pins Transition Variable reordering Partial—order
Wrappers caching Transition grouping reduction
I I I
PINS = == ¥ oo m - - At - --to oo
! ! !
. v v v
Reachability Distributed Multi—core Symbolic
Tools

UNIVERSITY OF TWENTE.

Guard-based Partial-Order Reduction in LTSmin

8 july 2013 16 / 16

n LTSmin OR ation Experiments Conclusion

End users: profit without changing modeling language

Spec > Probably the best scalable model checker up to 48 cores

Lang » economic with memory (lossless compression, por reduction)

» supports major modeling languages: SPIN, UPPAAL, mCRL2

Wray > €asy to link to new language modules through API| 4+ matrices :|

» now provides LTL model checker with partial-order reduction

» provides multi-core, distributed and symbolic algorithms " o-
I I I
N v v v
Reachability Distributed Multi—core Symbolic
Tools

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013

Implementation Experiments Conclusion

Why join the LTSmin project?

End users: profit without changing modeling language

» probably the best scalable model checker up to 48 cores

Spec
Lang » economic with memory (lossless compression, por reduction)

» supports major modeling languages: SPIN, UPPAAL, mCRL2

Developers: build your own HP Domain Specific Model Checker

ins?
Wray > €asy to link to new language modules through API| 4+ matrices :|
» now provides LTL model checker with partial-order reduction

» provides multi-core, distributed and symbolic algorithms " o-

REEW Scientists: prototype, benchmark, compare and combine

Tools symbolic, partial-order reduction, multi-core in one framework

UNIVERSITY OF TWENTE. Guard-based Partial-Order Reduction in LTSmin 8 july 2013 16 / 16

	Introduction LTSmin
	LTSmin Tool Architecture
	PINS Interface

	Theory
	Basis: Stubborn Sets
	Guard Based POR
	Necessary Disabling Sets

	Implementation
	Language Module Extensions
	Algorithm to find small Stubborn Sets
	POR and LTL model checking

	Experiments
	Conclusion

