
A Parallel Compact Hash Table
Alfons Laarman & Steven van der Vegt

Overview

Research Motivation

Background

Contribution

A Parallel Compact Hash Table October 3, 2011 2 / 19

Introduction

I Hash tables are fundamental data structures

I Compact hash tables: memory efficient hash tables
I Useful in i.e. Model checking, planning, BDDs, Tree tables
I Problem: No concurrent implementation of concurrent

hash tables
I Our contribution: A scalable lockless algorithm for

compact hashing

A Parallel Compact Hash Table October 3, 2011 3 / 19

Introduction

I Hash tables are fundamental data structures
I Compact hash tables: memory efficient hash tables

I Useful in i.e. Model checking, planning, BDDs, Tree tables
I Problem: No concurrent implementation of concurrent

hash tables
I Our contribution: A scalable lockless algorithm for

compact hashing

A Parallel Compact Hash Table October 3, 2011 3 / 19

Introduction

I Hash tables are fundamental data structures
I Compact hash tables: memory efficient hash tables
I Useful in i.e. Model checking, planning, BDDs, Tree tables

I Problem: No concurrent implementation of concurrent
hash tables

I Our contribution: A scalable lockless algorithm for
compact hashing

A Parallel Compact Hash Table October 3, 2011 3 / 19

Introduction

I Hash tables are fundamental data structures
I Compact hash tables: memory efficient hash tables
I Useful in i.e. Model checking, planning, BDDs, Tree tables
I Problem: No concurrent implementation of concurrent

hash tables

I Our contribution: A scalable lockless algorithm for
compact hashing

A Parallel Compact Hash Table October 3, 2011 3 / 19

Introduction

I Hash tables are fundamental data structures
I Compact hash tables: memory efficient hash tables
I Useful in i.e. Model checking, planning, BDDs, Tree tables
I Problem: No concurrent implementation of concurrent

hash tables
I Our contribution: A scalable lockless algorithm for

compact hashing

A Parallel Compact Hash Table October 3, 2011 3 / 19

Goals

I Parallel compact hash table
I Scalable

I Fast: lockless
I Memory efficient: no pointers (otherwise we lose the

benefits from compact hashing)
I Focus on findOrPut

I Already sufficient Model checking (monotonic growing
dataset)

I subsumes individual find and put operations

A Parallel Compact Hash Table October 3, 2011 4 / 19

Overview

Research Motivation

Background

Contribution

A Parallel Compact Hash Table October 3, 2011 5 / 19

Hashing Revisited

I A hash table stores a subset of a key universe U into an
table T of buckets
typically |U| � |T |

I Multiple keys can be mapped upon 1 bucket
I The full key is stored in T to resolve collisions
I Several possible collision resolution algorithms, i.e. linear

probing

A Parallel Compact Hash Table October 3, 2011 6 / 19

Hashing Revisited - Example

keys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

Ted Baker

buckets

000

001 Lisa Smith 521-8976

002

: : :

151

152 John Smith 521-1234

153 Sandra Dee 521-9655

154 Ted Baker 418-4165

155

: : :

253

254 Sam Doe 521-5030

255

Figure: Example of an open addressing hash table.

A Parallel Compact Hash Table October 3, 2011 7 / 19

Introduction Into Compact Hash Tables

I If however |U| ≤ |T |, we only need a bit array! (and a
perfect hash function)

I What if |U| just slightly bigger than |T |? Cleary Tables:
1. Maintain order in T
2. Add three bits to buckets in T

A Parallel Compact Hash Table October 3, 2011 8 / 19

Introduction Into BLP

Let K be the set of possible keys and h the hash function
which computes the indexes. h : K → {0..M − 1} with the
property K1,K2 ∈ K |K1 ≤ L2iff h(K1) ≤ h(K2)

I All keys are stored in ascending order.
I There can not be empty locations between a keys original

hash location and its actual storage position.
I All keys sharing the same initial hash location form one

continuous group.
I Groups can grow together forming clusters of groups.
I Bidirectional linear probing algorithm (probing possible in

both directions)

A Parallel Compact Hash Table October 3, 2011 9 / 19

Introduction Into BLP - Insert Example

Inserting k into table T in 5 steps:
1. Determine index: i ← h(k)
2. Determine probing direction T [h(k)] > k?right : left
3. Search empty bucket
4. Insert K into empty bucket
5. Swap bucket into correct place

A Parallel Compact Hash Table October 3, 2011 10 / 19

Cleary Table

Cleary administration bits:
I Virgin Set upon a bucket if its location is the initial hash

location for some key in the tables
I Change Set at the beginning of a group with the same

initial hash location
I Occupied Set if the bucket contains a key

A Parallel Compact Hash Table October 3, 2011 11 / 19

Cleary Table - Example

Figure: Example of a partially filled Cleary table with 4 groups.

A Parallel Compact Hash Table October 3, 2011 12 / 19

Overview

Research Motivation

Background

Contribution

A Parallel Compact Hash Table October 3, 2011 13 / 19

Requirements for Parallelizing

We need a write-exclusive locking mechanism that
I Scales well
I Is memory efficient

A Parallel Compact Hash Table October 3, 2011 14 / 19

Locking Mechanism

Properties:
I 1 bit per bucket

I CAS(a,b,c) - Compare-and-Swap (if a == b then a← c)
Locking steps:

1. Search for both left and right bucket of cluster
2. Lock these buckets
3. If one of these locks fails→ unlock and start over
4. Perform exclusive actions (read, write)

A Parallel Compact Hash Table October 3, 2011 15 / 19

Locking Mechanism

Properties:
I 1 bit per bucket
I CAS(a,b,c) - Compare-and-Swap (if a == b then a← c)

Locking steps:
1. Search for both left and right bucket of cluster
2. Lock these buckets
3. If one of these locks fails→ unlock and start over
4. Perform exclusive actions (read, write)

A Parallel Compact Hash Table October 3, 2011 15 / 19

Locking Mechanism

Properties:
I 1 bit per bucket
I CAS(a,b,c) - Compare-and-Swap (if a == b then a← c)

Locking steps:
1. Search for both left and right bucket of cluster

2. Lock these buckets
3. If one of these locks fails→ unlock and start over
4. Perform exclusive actions (read, write)

A Parallel Compact Hash Table October 3, 2011 15 / 19

Locking Mechanism

Properties:
I 1 bit per bucket
I CAS(a,b,c) - Compare-and-Swap (if a == b then a← c)

Locking steps:
1. Search for both left and right bucket of cluster
2. Lock these buckets

3. If one of these locks fails→ unlock and start over
4. Perform exclusive actions (read, write)

A Parallel Compact Hash Table October 3, 2011 15 / 19

Locking Mechanism

Properties:
I 1 bit per bucket
I CAS(a,b,c) - Compare-and-Swap (if a == b then a← c)

Locking steps:
1. Search for both left and right bucket of cluster
2. Lock these buckets
3. If one of these locks fails→ unlock and start over

4. Perform exclusive actions (read, write)

A Parallel Compact Hash Table October 3, 2011 15 / 19

Locking Mechanism

Properties:
I 1 bit per bucket
I CAS(a,b,c) - Compare-and-Swap (if a == b then a← c)

Locking steps:
1. Search for both left and right bucket of cluster
2. Lock these buckets
3. If one of these locks fails→ unlock and start over
4. Perform exclusive actions (read, write)

A Parallel Compact Hash Table October 3, 2011 15 / 19

Dynamic Region Based Locking

1: left ← CL-LEFT(h)
2: right ← CL-RIGHT(h)
3: if ¬TRY-LOCK(T [left]) then
4: RESTART

5: if ¬TRY-LOCK(T [right]) then
6: UNLOCK(T [left])
7: RESTART

8: if FIND(k) then . exclusive read
9: UNLOCK(T [left], T [right])

10: return FOUND

11: PUT(k) . exclusive write
12: UNLOCK(T [left], T [right])

A Parallel Compact Hash Table October 3, 2011 16 / 19

Benchmarks - Speedup

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

Cores

LHT 0:1
LHT 3:1
LHT 9:1
RBL 0:1
RBL 3:1
RBL 9:1
BLP 0:1
BLP 3:1
BLP 9:1
PCT 0:1
PCT 3:1
PCT 9:1
Ideal Speedup

Figure: Speedups of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1
and 9:1

A Parallel Compact Hash Table October 3, 2011 17 / 19

Benchmarks - Runtime

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

no
rm

al
iz

ed
 r

un
tim

e

load factor

LHT 0:1 LHT 3:1
LHT 9:1 RBL 0:1
RBL 3:1 RBL 9:1
BLP 0:1 BLP 3:1
BLP 9:1 PCT 0:1
PCT 3:1 PCT 9:1

Figure: 16-core runtimes of BLP, RBL, LHT and PCT with r/w ratios
0:1, 3:1 and 9:1.

A Parallel Compact Hash Table October 3, 2011 18 / 19

Results

I PCT performs very good with only inserts,
I PCT’s performance drops when the load-factor becomes

above the 85%
I With a high amount of reads ¿ (9:1) BLP eventually

becomes faster than LHT
I Region based locking with OS-locks is very slow as can

be seen in RBL
I scalability of both PCL and BLP is good.
I r/w ratio: r/w exclusion on clusters takes a toll.

there is room for improvement if look at the higher load
factors (when clusters are large)

A Parallel Compact Hash Table October 3, 2011 19 / 19

Conclusion

I We have realized parallel cleary with high performance
and scalability up to load-factors of 90%
Since the compression ratio of compact hash tables can
be high, this is acceptable

I Future work: Allow for concurrent reads with cleary to
improve scalability of Cleary even more

A Parallel Compact Hash Table October 3, 2011 20 / 19

	Research Motivation
	Background
	Contribution

