UNIVERSITY OF TWENTE.

A Parallel Compact Hash Table

Alfons Laarman & Steven van der Vegt

Y

Overview

% 3

Research Motivation

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 2/19

Introduction

% 3

» Hash tables are fundamental data structures

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3,2011 3/19

Introduction

% 3

» Hash tables are fundamental data structures
» Compact hash tables: memory efficient hash tables

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3,2011 3/19

Introduction

% 3

» Hash tables are fundamental data structures
» Compact hash tables: memory efficient hash tables
» Useful in i.e. Model checking, planning, BDDs, Tree tables

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3,2011 3/19

Introduction

% 3

v

Hash tables are fundamental data structures

v

Compact hash tables: memory efficient hash tables
Useful in i.e. Model checking, planning, BDDs, Tree tables

Problem: No concurrent implementation of concurrent
hash tables

v

v

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3,2011 3/19

Introduction

% 3

Hash tables are fundamental data structures

Compact hash tables: memory efficient hash tables
Useful in i.e. Model checking, planning, BDDs, Tree tables
Problem: No concurrent implementation of concurrent
hash tables

Our contribution: A scalable lockless algorithm for
compact hashing

v

v

v

v

v

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3,2011 3/19

Goals

% 3

» Parallel compact hash table
» Scalable

» Fast: lockless
» Memory efficient: no pointers (otherwise we lose the
benefits from compact hashing)

» Focus on findOrPut

» Already sufficient Model checking (monotonic growing
dataset)
» subsumes individual find and put operations

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 4/19

Overview

% 3

Background

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 5/19

Hashing Revisited

% 3

v

A hash table stores a subset of a key universe U into an
table T of buckets

typically |U| > |T|

Multiple keys can be mapped upon 1 bucket

The full key is stored in T to resolve collisions

Several possible collision resolution algorithms, i.e. linear
probing

v

v

v

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 6/19

% 3

Hashing Revisited - Example

keys

John Smith
Lisa Smith
Sam Doe

Sandra Dee

Ted Baker

buckets

001 Lisa Smith

521-8976

151
[831| John smith | 521-1234
83| sandra Dee | 521-9655
154 | Ted Baker 418-4165
155
253
254 Sam Doe 521-5030

255

Figure: Example of an open addressing hash table.

UNIVERSITY OF TWENTE.

A Parallel Compact Hash Table

October 3, 2011 7/19

Introduction Into Compact Hash Tables

% 3

» If however |U| < |T|, we only need a bit array! (and a
perfect hash function)
» What if |U] just slightly bigger than | T|? Cleary Tables:

1. Maintain orderin T
2. Add three bits to buckets in T

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 8/19

Introduction Into BLP

%

1 Let K be the set of possible keys and h the hash function
which computes the indexes. h: K — {0..M — 1} with the
property Ky, Ko € K’K1 < Loiff h(K1) < h(Kg)

» All keys are stored in ascending order.

» There can not be empty locations between a keys original
hash location and its actual storage position.

» All keys sharing the same initial hash location form one
continuous group.

» Groups can grow together forming clusters of groups.

» Bidirectional linear probing algorithm (probing possible in
both directions)

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3,2011 9/19

Introduction Into BLP - Insert Example

% 3

Inserting k into table T in 5 steps:
1. Determine index: i < h(k)
2. Determine probing direction T[h(k)] > k?right : left
Search empty bucket
Insert K into empty bucket
Swap bucket into correct place

ok~ w

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3,2011 10/19

Cleary Table

% 3

Cleary administration bits:

» Virgin Set upon a bucket if its location is the initial hash
location for some key in the tables

» Change Set at the beginning of a group with the same
initial hash location

» Occupied Set if the bucket contains a key

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 11/19

Cleary Table - Example

? 3

0o 1 2 3 4 5 & 7 8 9

¥
c H m H
rem| 7 g | 3 | 4 8 8 0 9

Yy 95 g, 9

Figure: Example of a partially filled Cleary table with 4 groups.

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 12/ 19

Overview

% 3

Contribution

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3,2011 13/19

Requirements for Parallelizing

% 3

We need a write-exclusive locking mechanism that
» Scales well
» Is memory efficient

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 14/19

Locking Mechanism

% 3

Properties:
» 1 bit per bucket

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 15/19

Locking Mechanism

% 3

Properties:
» 1 bit per bucket
» CAS(a,b,c) - Compare-and-Swap (if a == bthen a + ¢)

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 15/19

Locking Mechanism

% 3

Properties:

» 1 bit per bucket

» CAS(a,b,c) - Compare-and-Swap (if a == bthen a + ¢)
Locking steps:

1. Search for both left and right bucket of cluster

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 15/19

Locking Mechanism

% 3

Properties:

» 1 bit per bucket

» CAS(a,b,c) - Compare-and-Swap (if a == b then a < ¢)
Locking steps:

1. Search for both left and right bucket of cluster

2. Lock these buckets

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 15/19

Locking Mechanism

% 3

Properties:

» 1 bit per bucket

» CAS(a,b,c) - Compare-and-Swap (if a == b then a < ¢)
Locking steps:

1. Search for both left and right bucket of cluster

2. Lock these buckets

3. If one of these locks fails — unlock and start over

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 15/19

Locking Mechanism

% 3

Properties:
» 1 bit per bucket
» CAS(a,b,c) - Compare-and-Swap (if a == b then a < ¢)
Locking steps:
1. Search for both left and right bucket of cluster
2. Lock these buckets
e 3. If one of these locks fails — unlock and start over
' " 4. Perform exclusive actions (read, write)

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 15/19

Dynamic Region Based Locking

% 3

left < CL-LEFT(h)
right <— CL-RIGHT(h)
if -TRY-LOCK(T[/eft]) then
RESTART
if ~-TRY-LOCK(T[right]) then
UNLOCK(T[left])
RESTART
if FIND(k) then > exclusive read
o: UNLOCK(TT(left], T[right])
10: return FOUND
11: PUT(k) > exclusive write
12: UNLOCK(T [left], T[right])

O Nea RN

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 16/19

Benchmarks - Speedup

12.0
—&—LHT 0:1 4

% LHT 3:1
S "o : LHT 9:1 /

100 —®—RBLO:1

—#—RBL 3:1

9.0 RBL 9:1

——BLPO:1

8.0 —BLP3:1

BLP9:1

70 | e PCT 041

g PCT 3:1

§ 6.0 PCT 9:1

‘% Ideal Speedup
5.0
4.0
3.0
2.0
1.0 &
0.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Cores

Figure: Speedups of BLP, RBL, LHT and PCT with r/w ratios 0:1, 3:1
and 9:1

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 17/19

Benchmarks - Runtime

200.0
1800 —4—LHT 0:1 —&—LHT 3:1
A LHT O —®—RBLO0:1
160.0 —®—RBL3:1 RBL 9:1
——BLP0:1 ——BLP3:1
guo.o BLPO:11 e PCT0:1
E1200 PCT 3:1 PCT 9:1
2
g1000
N
g 800
2

10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
load factor

Figure: 16-core runtimes of BLP, RBL, LHT and PCT with r/w ratios
0:1, 3:1 and 9:1.

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 18/19

Results

% 3

» PCT performs very good with only inserts,

» PCT’s performance drops when the load-factor becomes
above the 85%

» With a high amount of reads ¢, (9:1) BLP eventually
becomes faster than LHT

» Region based locking with OS-locks is very slow as can
be seen in RBL

» scalability of both PCL and BLP is good.

» r/w ratio: r/w exclusion on clusters takes a toll.
there is room for improvement if look at the higher load
factors (when clusters are large)

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3,2011 19/19

Conclusion

% 3

» We have realized parallel cleary with high performance
and scalability up to load-factors of 90%
Since the compression ratio of compact hash tables can
be high, this is acceptable

» Future work: Allow for concurrent reads with cleary to
improve scalability of Cleary even more

UNIVERSITY OF TWENTE. A Parallel Compact Hash Table October 3, 2011 20/19

	Research Motivation
	Background
	Contribution

