UNIVERSITY OF TWENTE.

Formal Methods & Tools.

Multi-Core Model Checking

Alfons Laarman November 14, 2013

State Space Explosion

Approach

multi-core model checking

State Space Explosion

Approach

- multi-core model checking
- Confluence / partial-order reduction
- Symbolic techniques (BDD-based and SAT-based)
- On-the-fly techniques
- Compression techniques

Multi-Core Model Checking

Research questions

Can model checking scale (linearly, ideally) on modern multi-cores?

Multi-Core Model Checking

Research questions

- Can model checking scale (linearly, ideally) on modern multi-cores?
 - Formalisms: plain, timed, stochastic, etc
 - Properties: Reachability, LTL, CTL, etc

Multi-Core Model Checking

Research questions

- Can model checking scale (linearly, ideally) on modern multi-cores?
 - Formalisms: plain, timed, stochastic, etc
 - Properties: Reachability, LTL, CTL, etc

Are our parallel solutions compatible with other techniques?

- Partial-order reduction (POR)
- Symbolic exploration
- On-the-fly techniques
- Compression techniques

Correctness of data structures and algorithms

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
Challeng	es				
0					

- Correctness of data structures and algorithms
- Steep memory hierarchies

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
Challenge	es				

- Correctness of data structures and algorithms
- Steep memory hierarchies
- Cache coherence protocol

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
Challeng	es				

- Correctness of data structures and algorithms
- Steep memory hierarchies
- Cache coherence protocol

#define P 16

```
static void count (void *arg) {
    int *counter = (int *) arg;
    for (int i = 0; i < B / P; i++) ( *counter)++;
    }
int main (void) {
    pthread_t thread[P];
    int counters[P] = 0;
    for (int i = 0; i < P; i++)
        pthread_create (&thread[i], NULL, count, &counters[i]);
    int result = 0;
    for (int i = 0; i < P; i++) {
        pthread_join (thread[i], NULL);
        result += counters[i];
    }
    return result;
</pre>
```

Multi-Core Model Checking

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
Challenge	es				

- Correctness of data structures and algorithms
- Steep memory hierarchies
- Cache coherence protocol

#define P 16 $T_{16} = 32$ static void count (void *arg) { int *counter = (int *) arg: for (int i = 0; i < B / P; i++) (*counter)++; int main (void) { pthread_t thread[P]: int counters[P] = 0;for (int i = 0; i < P; i++)pthread_create (&thread[i], NULL, count, &counters[i]); int result = 0: for (int i = 0; i < P; i++) { pthread_join (thread[i], NULL); result += counters[i]: return result;

UNIVERSITY OF TWENTE.

Multi-Core Model Checking

November 14, 2013 4 / 27

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
Challenge	es				

- Correctness of data structures and algorithms
- Steep memory hierarchies
- Cache coherence protocol (false sharing)


```
#define P 16
                                                      T_{16} = 32
static void count (void *arg) {
                                                      T_{16} = 1.8
    int *counter = (int *) arg:
    for (int i = 0; i < B / P; i++) ( *counter)++;
int main (void) {
    pthread_t thread[P]:
    int __attribute__ ((aligned(64))) counters[P] = 0;
    for (int i = 0; i < P; i++)
         pthread_create (&thread[i], NULL, count, &counters[i]);
    int result = 0:
    for (int i = 0; i < P; i++) {
         pthread_join (thread[i], NULL);
        result += counters[i]:
    return result;
```

UNIVERSITY OF TWENTE.

Multi-Core Model Checking

November 14, 2013 4 / 27

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions

(Explicit-state) reachability

Problem:

find all reachable states from $s_0 \in S$ using a next-state function: $post(S) \rightarrow 2^S$

A state $s \in S$ is a (fixed) *K*-sized vector: $\langle v_1, \ldots, v_K \rangle$

Introduction Reachability LTL Timed Automata LTSmin Conclusions
Static partitioning or shared hash table

Introduction Reachability LTL Timed Automata LTSmin Conclusions
Static partitioning or shared hash table

Static partitioning

- X On-the-fly (BFS)
- ± Scalability (communication on queues)

Introduction Reachability LTL Timed Automata LTSmin Conclusions
Static partitioning or shared hash table

Static partitioning

- X On-the-fly (BFS)
- ± Scalability (communication on queues)

Shared hash table

- On-the-fly: (pseudo) DFS & BFS
 - ? Scalability

Introduction

Conclusions

Lockless Hash Table: Design LAARMAN, VAN DE POL, WEBER [FMCAD10]

Main bottlenecks

- State store: concurrent access
- Graph traversal: Random memory access (bandwidth)

Introduction

Conclusions

Lockless Hash Table: Design LAARMAN, VAN DE POL, WEBER [FMCAD10]

Main bottlenecks

- State store: concurrent access
- Graph traversal: Random memory access (bandwidth)

UNIVERSITY OF TWENTE.

Multi-Core Model Checking

November 14, 2013 8 / 27

UNIVERSITY OF TWENTE.

Multi-Core Model Checking

- Scalability comes from limiting bandwidth usage
- Correctness established with model checker

- Scalability comes from limiting bandwidth usage
- Correctness established with model checker

Partial-order reduction can be computed (state) locally

- Scalability comes from limiting bandwidth usage
- Correctness established with model checker

- Partial-order reduction can be computed (state) locally
- No compression, but states are often very similar due to locality

$$\langle 3, 5, 5, 4, 1, 3 \rangle \longrightarrow \langle 3, 5, 9, 3, 1, 3 \rangle$$

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Recursive indexing [HOLZMANN 97][BLOM ET AL. 08]
 Endexing
 Endexing
 Endexing
 Endexing

C							
	4	5	6	4	4	1	
	3	4	8	4	4	1	
	3	5	5	4	4	1	
	4	5	6	4	1	3	
	3	4	8	4	1	3	
	3	5	5	4	1	3	
	4	5	6	5	6	3	
	3	4	8	5	6	3	
	3	5	5	5	6	3	

✓ Combinatorial \implies balanced tree $(N + 2\sqrt{N} + 4\sqrt[4]{(N)} \dots \approx N)$ Compresses states of lenght K to almost 2!

- ✓ Combinatorial \implies balanced tree $(N + 2\sqrt{N} + 4\sqrt[4]{(N)} \dots \approx N)$ Compresses states of lenght K to almost 2!
- X Hard to parallelize (flatliners)

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Parallel Tree Compression

 LAARMAN, VAN DE POL, WEBER [SPIN11]

Solution

Temporary binary tree structure on stack

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Parallel Tree Compression

 LAARMAN, VAN DE POL, WEBER [SPIN11]

Solution

Temporary binary tree structure on stack

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Parallel Tree Compression
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 LAARMAN, VAN DE POL, WEBER [SPIN11]

- Temporary binary tree structure on stack
- Reuse lockless hash table (merge tables)

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Parallel Tree Compression
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 LAARMAN
 LAARMAN

- Temporary binary tree structure on stack
- Reuse lockless hash table (merge tables)

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Parallel Tree Compression
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 LAARMAN
 LAARMAN

- Temporary binary tree structure on stack
- Reuse lockless hash table (merge tables)

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Parallel Tree Compression
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 Laarman, Van De Pol, Weber [SPIN11]

- Temporary binary tree structure on stack
- Reuse lockless hash table (merge tables)
- ▶ Incremental updates: $(K 1) \rightarrow \log_2(K 1)$ lookups

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Experiments from 2011 [BEEM database]
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 Conclusions
 Conclusions

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Experiments from 2011 [BEEM database]

 LAARMAN, VAN DE POL, WEBER [SPIN11]

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Experiments from 2011 [BEEM database]
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 Conclusions
 Conclusions
 Conclusions

$$\langle 3,5,5,4,1,3\rangle \longrightarrow \langle 3,5,9,4,1,3\rangle \longrightarrow \langle 3,5,9,3,2,3\rangle \longrightarrow$$

Information theoretical lower bound?

View states as stream of variables: $\langle v_1^1, \dots, v_K^1 \rangle, \langle v_1^2, \dots, v_K^2 \rangle, \dots$ with $|v_i^i| = 2^{32}$

UNIVERSITY OF TWENTE.

Multi-Core Model Checking

November 14, 2013 12 / 27
Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Experiments from 2011 [BEEM database]
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 Conclusions
 Conclusions

$$(3,5,5,\overline{4,1,3}) \xrightarrow{\frac{K-1}{K}} (3,\overline{5,9,4,1,3}) \xrightarrow{1} (3,\overline{5,9,3,2,3}) \longrightarrow$$

Information theoretical lower bound?

- View states as stream of variables: $\langle v_1^1, \dots, v_K^1 \rangle, \langle v_1^2, \dots, v_K^2 \rangle, \dots$ with $|v_j^i| = 2^{32}$
- ► $p(v_j^i = v_j^{i-1}) = \frac{K-1}{K}$ and $p(v_j^i \neq v_j^{i-1}) = \frac{1}{K}$ (under-estimation)

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Experiments from 2011 [BEEM database]
 LAARMAN, VAN DE POL, WEBER [SPIN11]
 Conclusions
 Conclusions
 Conclusions

$$(3,5,5,\overline{4,1,3}) \xrightarrow{\frac{K-1}{K}} (3,\overline{5,9,4,1,3}) \xrightarrow{1} (3,\overline{5,9,3,2,3}) \longrightarrow$$

Information theoretical lower bound?

- View states as stream of variables: $\langle v_1^1, \dots, v_K^1 \rangle, \langle v_1^2, \dots, v_K^2 \rangle, \dots$ with $|v_j^i| = 2^{32}$
- ► $p(v_j^i = v_j^{i-1}) = \frac{K-1}{K}$ and $p(v_j^i \neq v_j^{i-1}) = \frac{1}{K}$ (under-estimation)
- Entropy per state: $K \times H(s_j^i) \approx \log_2(2^{32}) + \log_2(K)$ bits $\approx 1 + \epsilon$ integer

UNIVERSITY OF TWENTE.

Multi-Core Model Checking

November 14, 2013 12 / 27

$$\overbrace{(3,5,5,4,1,3)}^{\frac{K-1}{K}} \overbrace{(3,5,9,4,1,3)}^{\frac{1}{K}} \overbrace{(3,5,9,3,2,3)}^{\frac{K-1}{K}} \rightarrow$$

Information theoretical lower bound?

- View states as stream of variables: $\langle v_1^1, \dots, v_K^1 \rangle, \langle v_1^2, \dots, v_K^2 \rangle, \dots$ with $|v_j^i| = 2^{32}$
- ► $p(v_j^i = v_j^{i-1}) = \frac{K-1}{K}$ and $p(v_j^i \neq v_j^{i-1}) = \frac{1}{K}$ (under-estimation)
- Entropy per state: $K \times H(s_i^i) \approx \log_2(2^{32}) + \log_2(K)$ bits $\approx 1 + \epsilon$ integer
- Halve the root table with Cleary compact hash table [MEMICS11]

- Scalability from merging tables & incremental updates
- Correctness proved by hand
 - The recursive tree function is an injection [SPIN11]

- Scalability from merging tables & incremental updates
- Correctness proved by hand
 - The recursive tree function is an injection [SPIN11]

Still only safety...

In	++	0	а	 0	÷ :	0	n
		\circ	u				

LTL

LTL

The ω -language of the Büchi automaton represents all counter examples

LTL

LTL

The ω -language of the Büchi automaton represents all counter examples

"It is as yet an open problem how a liveness verification algorithm could be generalized to the use of more than two processing cores while retaining a low search complexity."

[Holzmann '07]

"One of the most important open problems of parallel LTL model checking is to design an on-the-fly scalable parallel algorithm with linear time complexity."

[Brim, Barnat et Ročκai ′11]

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
Nested [Courcoube	Depth-Firs	t Sear	ch for LTL		
procedu	re DFSblue(s)				

```
s.cyan := true
   for all s' in post(s) do
      if ¬t.blue∧¬t.cyan then
         DFSblue(s')
   if accepting(s) then
      DFSred(s)
   s.blue := true
   s.cyan := false
procedure DFSred(s)
   s.red := true
   for all s' \in post(s) do
      if t.cyan then ExitCycle
      if ¬t.red then DFSred(s')
```

Nested DFS (NDFS) Linear time

Conclusions

Nested Depth-First Search for LTL [Courcoubetis'93]

procedure DFSblue(s) s.cyan := true for all s' in post(s) do if ¬t.blue∧¬t.cyan then DFSblue(s') if accepting(s) then DFSred(s) s.blue := true s.cyan := false **procedure** DFSred(s) s.red := true for all $s' \in post(s)$ do if t.cyan then ExitCycle if ¬t.red then DFSred(s')

Nested DFS (NDFS)

Linear time

- DFS itself is likely not parallelizable
 - DFS order is a P-complete problem
 - We assume: P ≠ NC

Introduction Reachability LTL Timed Automata LTSmin Conclusions Multi-core Nested Depth-First Search (Principle) [АТVА11], [РDмс11], [АТVА12]

```
code for worker p:
procedure DFSblue(s,p)
   s.cyan p := true
   for all s' in shuffle(post(s)) do
      if \neg s'.blue \land \neg t.cyan p then
         DFSblue(s',p)
   if accepting(s) then
      DFSred(s,p)
   s.blue := true
   s.cyan[p] := false
procedure DFSred(s,p)
   s.red p := true
   for all s' \in post(s) do
      if t.cyan b then ExitCycle
      if \negt.red[p] then DFSred(s',p)
```


Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
LTL and I	Partial-O	rder Re	eduction		

- Scalability due to hash/tree table (linear-time)
- Correctness proved by hand [ATVA11][PDMC11][ATVA12]

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
LTL and F	Partial-O	rder Re	eduction		

- Scalability due to hash/tree table (linear-time)
- Correctness proved by hand [ATVA11][PDMC11][ATVA12]

For partial-order reduction, we need to solve ignoring

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
LTL and P	Partial-O	rder Re	eduction		

- Scalability due to hash/tree table (linear-time)
- Correctness proved by hand [атvа11][ромс11][атvа12]

For partial-order reduction, we need to solve ignoring

- ► For livelocks (⊃ LTL), any unfair cycle is a counter example!
- Parallel DFS_{FIFO} Laarman et Faragó [nfm13]

Experiments: LTL with Partial-Order Reduction

Experiments: LTL with Partial-Order Reduction

Partial-order reductions:

	LTSmin	SPIN
	DFS _{FIFO}	NDFS
leader	0.49%	1.15%
garp	2.18%	12.73%
giop	1.86%	2.42%
i-prot	31.83%	41.37%

Experiments: LTL with Partial-Order Reduction

Partial-order reductions:

	LTSMIN	SPIN
	DFS _{FIFO}	NDFS
leader	0.49%	1.15%
garp	2.18%	12.73%
giop	1.86%	2.42%
i-prot	31.83%	41.37%

Max. model size explored in 30 min.

	LTSMIN	DiVinE
cores	DFS _{FIFO}	OWCTY
1	12	9
48	15	11

DFS_{FIFO} VS OWCTY + POR [BRIM ET AL '10]

Introduction	Reachability		meu Au					Conclusio	
	Formalism	A COOL	L.			× 0, ^{35,50}	"the fly		
	Plain	Reachability LTL Livelocks	\$ \$ \$	\$ \$ \$	✓ × ✓	\$ \$ \$			
	ned	Reachability	?	?	?	?			

E LTL ????

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions

States are semi-symbolic: $s = \langle d, \sigma \rangle$ (finite continuous-time abstraction)

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions

States are semi-symbolic: $s = \langle d, \sigma \rangle$ (finite continuous-time abstraction)

This introduces a new subsumption relation: $s \sqsubseteq s'$, iff $d = d' \land \sigma \sqsubseteq \sigma'$

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions

States are semi-symbolic: $s = \langle d, \sigma \rangle$ (finite continuous-time abstraction)

This introduces a new subsumption relation: $s \sqsubseteq s'$, iff $d = d' \land \sigma \sqsubseteq \sigma'$

Subsumption is a simulation relation which allows another, dynamic abstraction

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
Timed Au Dalsgaard, La	utomata Arman, Olesen	, Larsen, v	/an de Pol [formats	:12]	

✓ For reachability, we implemented a lockless multi-map [FORMAT12]

Introduction	Reachability	LTL	Timed Automata	LTSmin	Conclusions
Timed A Dalsgaard, L	Utomata AARMAN, OLESEN,	Larsen, V	/an de Pol [formats	12]	

✓ For reachability, we implemented a lockless multi-map [FORMAT12]

✓ For reachability, we implemented a lockless multi-map [FORMAT12]

X Subsumption does not preserve Büchi emptiness! [TRIPAKIS'09]

 \rightarrow s_0 s_1 s_1 s_2 s_1 s_1 s_2 s_1 s_2 s_1 s_2 s_1 s_2 s_2 s_1 s_2 s_1 s_2 s_2 s_2 s_1 s_2 s_2 s_1 s_2 s_2 s_2 s_1 s_2 s_2 s_2 s_2 s_1 s_2 s_2 s_2 s_2 s_1 s_2 s_2 s_2 s_2 s_3 s_1 s_2 s_2 s_3 s_1 s_2 s_2 s_2 s_3 s_1 s_2 s_3 s_1 s_2 s_3 s_1 s_3 s_1 s_2 s_3 s_1 s_3 s_1 s_3 s_1 s_2 s_3 s_1 s_3 s_1 s_2 s_3 s_1 s_1 s_1 s_2 s_2 s_1 s_3 s_1 s_1 s_1 s_1

 $s_3 \sqsubseteq s_1$

UNIVERSITY OF TWENTE.

Multi-Core Model Checking

Analysis of accepting cycles/spirals with subsumption LAARMAN, OLESEN, DALSGAARD, LARSEN, VAN DE POL [CAV13]

Lemma: If s has an accepting cycle then any $s' \supseteq s$ has it as well

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Analysis of accepting cycles/spirals with subsumption
 LAARMAN, OLESEN, DALSGAARD, LARSEN, VAN DE POL [CAV13]
 Conclusions

Lemma: If s has an accepting cycle then any $s' \supseteq s$ has it as well

Introduction Reachability LTL Timed Automata LTSmin Conclusions Analysis of accepting cycles/spirals with subsumption LAARMAN, OLESEN, DALSGAARD, LARSEN, VAN DE POL [CAV13]

Lemma: If s has an accepting cycle then any $s' \supseteq s$ has it as well

Preservation of accepting cycles

s'	\rightarrow^*	ť	\rightarrow^+	t″
s	\rightarrow^*	t	\rightarrow^+	t

Proof Sketch

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Analysis of accepting cycles/spirals with subsumption
 LAARMAN, OLESEN, DALSGAARD, LARSEN, VAN DE POL [CAV13]
 Conclusions

Lemma: If s has an accepting cycle then any $s' \supseteq s$ has it as well

Preservation of accepting cycles

s'	\rightarrow^*	ť	\rightarrow^+	ť″	\rightarrow^+	 \rightarrow^+	t'''
S	\rightarrow^*	t	\rightarrow^+	t	\rightarrow^+	 \rightarrow^+	t

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin
 Conclusions

 Analysis of accepting cycles/spirals with subsumption
 LAARMAN, OLESEN, DALSGAARD, LARSEN, VAN DE POL [CAV13]
 Conclusions

Lemma: If s has an accepting cycle then any $s' \supseteq s$ has it as well

Introduction Reachability LTL Timed Automata LTSmin Conclusions Analysis of accepting cycles/spirals with subsumption LAARMAN, OLESEN, DALSGAARD, LARSEN, VAN DE POL [CAV13]

Lemma: If s has an accepting cycle then any $s' \supseteq s$ has it as well

Lemma: If t' has an accepting spiral then t' has an accepting cycle

 Introduction
 Reachability
 LTL
 Timed Automata
 LTSmin

 Results with Parallel Timed Reachability / LTL
 LAARMAN, OLESEN, DALSGAARD, LARSEN, VAN DE POL [CAV13][FORMATS2012]
 LAARMAN, OLESEN, DALSGAARD, LARSEN, VAN DE POL [CAV13][FORMATS2012]

- Add full LTL to timed automata
- Runtimes 60x faster than UPPAAL on 48 cores
- Up to 70x reductions due to subsumption
- Tree compression for large discrete states

http://fmt.cs.utwente.nl/tools/ltsmin/ (open source)

Other work

- ► Guard-based PORPater, Laarman, van de Pol [spin13]
- ▶ PROMELA formalism VAN DER BERG ET LAARMAN [PDMC12]
- ▶ LTSmin tool Laarman, Weber, van de Pol [nfm11]

Introduction	Reachability	/ LTL	Timed Automata	LTSmin	Conclusions			
Contr	ributions							
Formalism	Property.	Etalicit state * Compression * Oppression	N.He.H.	publicatior	ıs			
Plain	Reachability LTL Livelocks	$\begin{array}{ccccc} \checkmark & \checkmark & \checkmark & \checkmark \\ \checkmark & \checkmark & 1/2 & \checkmark \\ \checkmark & \checkmark & \checkmark & \checkmark \end{array}$	[FMCAI [ATVA] [SPIN]	d10][spin11][m [1][pdmc11][ат .3][nfm13]	іемісs11] va12]			
Timed	Reachability LTL	$\begin{array}{cccc} \checkmark & \checkmark & - & \checkmark \\ \checkmark & \checkmark & - & \checkmark \end{array}$	[form [cav13	атs12] 3]				
Introdu	uction	Reachability		LTL	Timed Aut	omata LTS	min Conclusions	
---------	-----------	----------------------------------	-------------------	--	-----------------------	--	---	--
Co	ntr	ibutions						
	Formalism	Property	Etolici,	× Con ⁵ ³⁷ ³⁷ ³⁷ ⁴ ⁶	* 0, 'on Smbolic M	pub	olications	
	Plain	Reachability LTL Livelocks	5 5 5 5 5 5	1/2 /	? ?	[fmcad10][sf [atva11][pdm [spin13][nfw	рім11][мемісs11] ис11][атvа12] и13]	
-	Timed	Reachability LTL		- /	? ?	[formats12] [cav13]		
(Othe	r work						
	•	Multi-core BDDs			VAN	Dijk, Laarman, v	an de Pol [pdmc12]	

Contributions using U	Conclusions	omata LTSmin	Timed Auto			LTL		achability	R	ntroduction
Image: second								ns	ributio	Contr
$\begin{array}{ c c c c c c c c } \hline \textbf{R}eachability & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & & & & & & & $	cations	public	Spnbolic R	40. 40. ×	2 POP ression	Constate		Ti-lado,	4	Formalism
Beachability ✓ ✓ ✓ ? [formats12] LTL ✓ ✓ ✓ ? [cav13]	v11][мемісs11] 11][атva12] 3]	[fmcad10][spin3 [atva11][pdmc1 [spin13][nfm13		?		✓ 1/2 ✓		bility /	Reacha LTL Liv	Plain
		[formats12] [cav13])	? ?	/ /	-		bility 🗸	Reacha LTL	Timed
Other work										
 Multi-core BDDsvan Dijk, Laarman, van de Pol [pdmc12] One-Way-Catch-Them Young (LTL)[Barnat,Brim,Ročkai'01] Topological sort proviso (POR)[Barnat,Brim,Ročkai'10] CTI 	de Pol [pdmc12] ;Brim,Ročkai′01] ;Brim,Ročkai′10]	Dijk, Laarman, van d [Barnat,E [Barnat,F	VAN	L)	(LTL ()	oung (POR	em Ya oviso (e BDDs -Catch-Th al sort pro	Multi-co One-Wa <u>y</u> Topologi	

imed Automata

LT

Conclusions

UNIVERSITY OF TWENTE.

Multi-Core Model Checking

November 14, 2013 27 / 27