
SHARED HASH TABLES IN PARALLEL MODEL CHECKING

ALFONS LAARMAN

JOINT WORK WITH MICHAEL WEBER

AND JACO VAN DE POL

 23/4/2010

IPA LENTEDAGEN 2010

Introduction
Goal and motivation

What is model checking?

Hash tables

Related work

Lockless hash table

Experiments

23/4/2010 Shared Hash Tables in Parallel Model Checking

AGENDA

1

Goal:

Realize efficient multi-core reachability

Motivation:

Multi-core is a necessity

Reachability is a the basis of many verification problems

Current model checkers do not scale as good as possible

If you cannot parallelize reachability efficiently, then how do you

parallelize more complicated algorithms:

 full LTL model checking, symbolic reachability, POR, etc

23/4/2010 2

GOAL AND MOTIVATION

Shared Hash Tables in Parallel Model Checking

23/4/2010 3

WHAT IS MODEL CHECKING?

Shared Hash Tables in Parallel Model Checking

www.toshiba.co.jp

•PROMELA (SPIN)

•DVE (DiVinE)

•.NET (MoonWalker)

•C/C++ (terminator)

•Process algebraic (mCRL 1/2)

•Timed (UPPAAL)

•Hardware model checkers

23/4/2010 4

WHAT IS MODEL CHECKING?

Process1 Process2

x ← x + 1;1

if y ==1 then2

x ← 10;3

end4

y ← y + 1;1

if x ==1 then2

y ← 10;3

end4

Shared Hash Tables in Parallel Model Checking

State space

explosion

•States are arrays with variables

•Search in state space graph

•V stores all seen states

•DFS or BFS depending on T

•Deadlocks and invariants

Parallelization:

•High throughput

•Synchronization points

23/4/2010 5

WHAT IS MODEL CHECKING?

Shared Hash Tables in Parallel Model Checking

Data: Buffer T = {s0}, Set V = ∅
while state ← T.get() do1

count ← 0;2

for succ in next-state(state) do3

count ← count + 1;4

if V.find-or-put(succ) then5

T.put(succ);6

end7

end8

if 0 == count then9

//DEADLOCK, print trace..10

end11

end12

A key is associated with data by using its hash as an index in a table

 (wikipedia)

Hash collisions:

•Create overflow list (chaining) large memory working set

•Continue probing (open addressing) asymptotic behavior when full

• Linear probing, double hashing

23/4/2010 6

HASH TABLES

Shared Hash Tables in Parallel Model Checking

Fast model checkers:

SPIN

DiVinE 2.2

DiVinE with Shared storage

23/4/2010 7

RELATED WORK

Shared Hash Tables in Parallel Model Checking

23/4/2010 8

RELATED WORK

store

Worker 1 Worker 2

Worker 4 Worker 3

Stack

Stack

Stack

Stack

Worker 1 Worker 2

Worker 3 Worker 4

QueueQueue

QueueQueue

store store

storestore

DiVinE 2.2: static partitioning

BFS only, high comm. Costs,

static load balancing

SPIN 5.2.4: shared storage + stack slicing

DFS only, multiple sync. points, specific

case of load balancing

Shared Hash Tables in Parallel Model Checking

23/4/2010 9

RELATED WORK

store

Worker 1 Worker 2

Worker 3 Worker 4

Barnat, Ro kai (2007) Shared hash tables in

parallel model checking

• “Shared hash tables do not scale

beyond 8 cores”

• “Could not investigate lockless hash

table solution”

• Flexible reachability algorithm

• Flexible load-balancing

Shared Hash Tables in Parallel Model Checking

Design

Lockless hash table

Load balancing

23/4/2010 10

LOCKLESS HASH TABLE

Shared Hash Tables in Parallel Model Checking

•Investigate requirements on shared storage

•Investigate hardware (cache behavior)

Requirements

•Find-or-put operation only

•Scale by keeping a low memory working set

•No pointers, no allocation

•No resize!

•Statically sized state vectors

23/4/2010 11

LOCKLESS HASH TABLE

Shared Hash Tables in Parallel Model Checking

Open addressing

Hash memoization

Separate data

Walking the line

Lockless (CAS + write bit)

See also Cliff Click JavaOne talk (2007)

23/4/2010 12

LOCKLESS HASH TABLE

|state|

data bucket

|c
a
c
h
e
 l
in

e
|

Shared Hash Tables in Parallel Model Checking

23/4/2010 13

LOCKLESS HASH TABLE

Walk-the-line

Linear probing

Double hashing

Wait for write in data

array to complete

Shared Hash Tables in Parallel Model Checking

Static load-balancing

Workers can run out of work

Work stealing/handoff

Synchronized random polling

[Sanders97]

23/4/2010 14

LOAD BALANCING

Shared Hash Tables in Parallel Model Checking

As a summary, we implemented:

•The lockless hash table (in C)

•Reachability DFS + BFS

•Static load-balancing

•Synchronized random polling

Reused DiVinE next-state function

23/4/2010 15

SUMMARY

Shared Hash Tables in Parallel Model Checking

Using CMS 16-way AMD Opteron cluster

linux 2.6.18, 2.6.32+patch

30+ models from BEEM database

Translated models for SPIN (same state count!)

Statically sized hash tables

Fair

Results

23/4/2010 16

SETUP

EXPERIMENTS

Shared Hash Tables in Parallel Model Checking

23/4/2010 17

EXPERIMENTS

Shared Hash Tables in Parallel Model Checking

Example, all model checkers, 3 models:

23/4/2010 18

EXPERIMENTS

Shared Hash Tables in Parallel Model Checking

DiVinE 2.2:

23/4/2010 19

EXPERIMENTS

Shared Hash Tables in Parallel Model Checking

SPIN 5.2.4:

23/4/2010 20

EXPERIMENTS

Shared Hash Tables in Parallel Model Checking

LTSmin (lockless hash table):

23/4/2010 21

EXPERIMENTS

Shared Hash Tables in Parallel Model Checking

23/4/2010 22

EXPERIMENTS

Shared Hash Tables in Parallel Model Checking

23/4/2010 23

DISCUSSION / LIMITATIONS

• Statically sized states

• Reachability as a basis

• Slower sequentially

• Not 100% lock-free, but also not necessary

Shared Hash Tables in Parallel Model Checking

Adapt applications to hardware (memory hierarchy)

Centralized state storage scales better and is more flexible

Scalable explicit exploration is a good starting point for future work on

multi-core X. X {(weak) LTL model checking, symbolic exploration,

space-efficient explicit exploration}

Holzmann’s conjectures:

works only for unoptimized sequential code

works only for small state vectors/long transition delays

SPIN has many features though, but backwards compatibility seems

wrong starting point for scalable multi-core algorithms

HTTP://FMT.CS.UTWENTE.NL/TOOLS/LTSMIN/

23/4/2010 24

CONCLUSIONS

Shared Hash Tables in Parallel Model Checking

23/4/2010 Shared Hashtables in Parallel Model Checking 25

LTSMIN BFS SPEEDUPS BASE CASE: LTSMIN BFS

23/4/2010 Shared Hashtables in Parallel Model Checking 26

LTSMIN DFS SPEEDUPS BASE CASE: LTSMIN DFS

23/4/2010 Shared Hashtables in Parallel Model Checking 27

LTSMIN SPEEDUPS BASE CASE: LTSMIN STATIC LOAD BALANCING

