UNIVERSITY OF TWENTE.
Formal Methods & Tools.

Model checking LTL for Timed Automata

"é'q‘, - Multi-core Nested DFS with Subsumption -
Alfons Laarman, Mads Olesen,
Andreas Dalsgaard, Kim Larsen,
Jaco van de Pol

CAV'13, St. Petersburg

Kim celebrating the CAV 2013 Award

UNIVERSITY OF TWENTE. LTL for Timed Automata

Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1

Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

()

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1

Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1

Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8
{o, (0> — Ao, <0> — {1, (0 >

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1

Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8\ o5 0
{o, (0> — Ao, <0> — {1, (0 > — {3, (O)

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1

Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8\ o5 0\ 20 2.0
(o) 0 (g) o () 2 en) 22 (5g)

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1

Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8\ o5 0\ 20 2.0
(o) 0 g) 20 (5) e (5) = (35) #

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1

Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8\ o5 0\ 20 2.0
(o) 0 (g) o () 2 en) 22 (5g)

Question: is the Biichi language empty? no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1

Finite representation: zone abstraction, extrapolation

Finite representation by zones (DBM) [Dill’89] [Daws, Tripakis'98]

> A zone is a set of constraints
> Finite abstractions: k-extrapolation, LU-abstraction
(taking into account Lower/Upperbounds in the TBA)

UNIVERSITY OF TWENTE. LTL for Timed Automata 4/1

Finite representation: zone abstraction, extrapolation

Finite representation by zones (DBM) [Dill’89] [Daws, Tripakis'98]

> A zone is a set of constraints
> Finite abstractions: k-extrapolation, LU-abstraction
(taking into account Lower/Upperbounds in the TBA)

UNIVERSITY OF TWENTE. LTL for Timed Automata 4/1

Finite representation: zone abstraction, extrapolation

Finite representation by zones (DBM [Dill'89] [Daws, Tripakis'98]

> A zone is a set of constraints
> Finite abstractions: k-extrapolation, LU-abstraction
(taking into account Lower/Upperbounds in the TBA)

Zi1 = y<xANy<2

UNIVERSITY OF TWENTE. LTL for Timed Automata 4/1

Finite representation: zone abstraction, extrapolation

Finite representation by zones (DBM [Dill'89] [Daws, Tripakis'98]

> A zone is a set of constraints
> Finite abstractions: k-extrapolation, LU-abstraction
(taking into account Lower/Upperbounds in the TBA)

4] y<xAy<2
Z = y=xAy<2

UNIVERSITY OF TWENTE. LTL for Timed Automata 4/1

Finite representation: zone abstraction, extrapolation

Finite representation by zones (DBM

> A zone is a set of constraints

[DillI'89] [Daws, Tripakis'98]

> Finite abstractions: k-extrapolation, LU-abstraction
(taking into account Lower/Upperbounds in the TBA)

UNIVERSITY OF TWENTE.

V4l
2>

LTL for Timed Automata

y=x
y<xAy<?2
y=xANy <2

4/1

Finite representation: zone abstraction, extrapolation

Finite representation by zones (DBM

> A zone is a set of constraints

[DillI'89] [Daws, Tripakis'98]

> Finite abstractions: k-extrapolation, LU-abstraction
(taking into account Lower/Upperbounds in the TBA)

UNIVERSITY OF TWENTE.

V4l
Z>

y=x
y<xAy<?2
y=xANy <2

Z> C Zy, 50 (01, 25) C (01, Z1)

LTL for Timed Automata

4/1

Subsumption, or inclusion abstraction

Known results [Behrmann et al’'04] [Tripakis'09] [Li'09]

> k-extrapolation and LU-abstraction preserves of locations
» k-extrapolation and LU-abstraction also preserve

> preserves of locations as well

UNIVERSITY OF TWENTE. LTL for Timed Automata 5/1

Subsumption, or inclusion abstraction

Known results [Behrmann et al’'04] [Tripakis'09] [Li'09]

> k-extrapolation and LU-abstraction preserves of locations

» k-extrapolation and LU-abstraction also preserve

> preserves of locations as well
I =
Zone abstraction s3C 51 subsumption

UNIVERSITY OF TWENTE. LTL for Timed Automata 5/1

Subsumption, or inclusion abstraction

Known results [Behrmann et al’'04] [Tripakis'09] [Li'09]

> k-extrapolation and LU-abstraction preserves of locations
» k-extrapolation and LU-abstraction also preserve

> preserves of locations as well

ofolNG

Zone abstraction s3C 51 subsumption

Open problem posed in [Tripakis'09]

Is emptiness of Timed Biichi Automata preserved by subsumption?

UNIVERSITY OF TWENTE. LTL for Timed Automata 5/1

Subsumption, or inclusion abstraction

Known results [Behrmann et al’'04] [Tripakis'09] [Li'09]

> k-extrapolation and LU-abstraction preserves of locations
» k-extrapolation and LU-abstraction also preserve

> preserves of locations as well

YoFoRGY ¥0%0
FO O

Zone abstraction s3C 51 subsumption

Open problem posed in [Tripakis'09]

Is emptiness of Timed Biichi Automata preserved by subsumption? NO

UNIVERSITY OF TWENTE. LTL for Timed Automata 5/1

Analysis of accepting cycles/spirals with subsumption

LI
s — t

UNIVERSITY OF TWENTE. LTL for Timed Automata 6/1

Analysis of accepting cycles/spirals with subsumption

s =t
(] U
s — t

UNIVERSITY OF TWENTE. LTL for Timed Automata 6/1

Analysis of accepting cycles/spirals with subsumption

s =t
(] U
s — t

If s has an accepting cycle then any s’ O s has it as well
If ' has an accepting then t/ has an accepting

UNIVERSITY OF TWENTE. LTL for Timed Automata 6/1

Analysis of accepting cycles/spirals with subsumption

s =t
(] (]
s — t
>
[
o= 3o

.
If s has an accepting cycle then any s’ O s has it as well
then t’ has an accepting
Proof Sketch

If ' has an accepting

6/1

LTL for Timed Automata

UNIVERSITY OF TWENTE.

Analysis of accepting cycles/spirals with subsumption

s/_)t/ \ i \ /

(] Ll
s — t

If s has an accepting cycle then any s’ O s has it as well
If ' has an accepting then t/ has an accepting

Proof Sketch

UNIVERSITY OF TWENTE. LTL for Timed Automata 6/1

Analysis of accepting cycles/spirals with subsumption

s =t
(] (]
s — t

If s has an accepting cycle then any s’ O s has it as well
If ' has an accepting then t/ has an accepting

UNIVERSITY OF TWENTE. LTL for Timed Automata 6/1

Analysis of accepting cycles/spirals with subsumption

s =t
(] (]
s — t

If s has an accepting cycle then any s’ O s has it as well
If ' has an accepting then t/ has an accepting

UNIVERSITY OF TWENTE. LTL for Timed Automata 6/1

Recall: Nested Depth First Search [CVWY'92] [Holzmann'92]

> Blue search: explore graph in DFS order
» states on the blue search stack are cyan

Blue search

1. procedure dfsBlue(s)
2: add s to Cyan

8: move s from Cyan to Blue

UNIVERSITY OF TWENTE. LTL for Timed Automata 7/1

Recall: Nested Depth First Search [CVWY'92] [Holzmann'92]

> Blue search: explore graph in DFS order
» states on the blue search stack are cyan

Blue search

1. procedure dfsBlue(s)
2: add s to Cyan

8: move s from Cyan to Blue

UNIVERSITY OF TWENTE. LTL for Timed Automata 7/1

Recall: Nested Depth First Search [CVWY'92] [Holzmann'92]

> Blue search: explore graph in DFS order

» states on the blue search stack are cyan
> on from an state:

Blue search

1. procedure dfsBlue(s)

2 add s to Cyan

3: for all successors t of s do

4 if t ¢ Blue U Cyan then
5 dfsBlue(t)

8: move s from Cyan to Blue

UNIVERSITY OF TWENTE. LTL for Timed Automata 7/1

Recall: Nested Depth First Search [CVWY'92] [Holzmann'92]

> Blue search: explore graph in DFS order

» states on the blue search stack are cyan
> on from an state:

» Red search: find an accepting cycle

Blue search

2: add s to Cyan 1: procedure dfsRed(s)

3 for all successors t of s do 2 add s to Red

4 if t ¢ Blue U Cyan then 3: for all successors t of s do
5: dfsBlue(t)

6 if s is accepting then

7 dfsRed(s) 6: if t ¢ Red then

8 move s from Cyan to Blue 7: dfsRed(t)

UNIVERSITY OF TWENTE. LTL for Timed Automata 7/1

Recall: Nested Depth First Search [CVWY'92] [Holzmann'92]

> Blue search: explore graph in DFS order

» states on the blue search stack are cyan
> on from an state:

» Red search: find an accepting cycle
> exit as soon as the is reached

Blue search

2: add s to Cyan 1: procedure dfsRed(s)

3 for all successors t of s do 2 add s to Red

4 if t ¢ Blue U Cyan then 3: for all successors t of s do
5: dfsBlue(t)

6 if s is accepting then

7 dfsRed(s) 6: if t ¢ Red then

8 move s from Cyan to Blue 7: dfsRed(t)

UNIVERSITY OF TWENTE. LTL for Timed Automata 7/1

Recall: Nested Depth First Search [CVWY'92] [Holzmann'92]

> Blue search: explore graph in DFS order

» states on the blue search stack are cyan
> on from an state:

» Red search: find an accepting cycle
> exit as soon as the is reached

> Linear time, depends on post-order

Blue search

1. procedure dfsBlue(s)
2: add s to Cyan 1: procedure dfsRed(s)

3 for all successors t of s do 2: add s to Red

4 if t & Blue U Cyan then 3: for all successors t of s do

5: dfsBlue(t) 4: if t € Cyan then

6 if s is accepting then 5: Exit: cycle detected

7 dfsRed(s) 6: if t ¢ Red then

8 move s from Cyan to Blue 7: dfsRed(t)

UNIVERSITY OF TWENTE. LTL for Timed Automata 7/1

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := CyanU {s}
for all successors t of s do
if t ¢ BlueU Cyan then
dfsBlue(t)
if s is accepting then
dfsRed(s)

Blue, Cyan := Blue U {s}, Cyan\{s}

CONNRORCIE-ENCD

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red U {s}

3 for all successors t of s do
4: if t € Cyan then

5: Exit: cycle detected
6: if t¢ Red then

7 dfsRed(t)

UNIVERSITY OF TWENTE. LTL for Timed Automata 8/1

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := CyanU {s}
for all successors t of s do
if t ¢ BlueU Cyan then
dfsBlue(t)
if s is accepting then
dfsRed(s)

Blue, Cyan := Blue U {s}, Cyan\{s}

CONNRORCIE-ENCD

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red U {s}

3 for all successors t of s do

4: if ¢t Cyan then Accepting spiral found!
5: Exit: cycle detected

6: if t¢ Red then

7 dfsRed(t)

UNIVERSITY OF TWENTE. LTL for Timed Automata 8/1

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := CyanU {s}
for all successors t of s do
if t ¢ BlueU Cyan then
dfsBlue(t)
if s is accepting then
dfsRed(s)

Blue, Cyan := Blue U {s}, Cyan\{s}

CONNRORCIE-ENCD

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red U {s}

3 for all successors t of s do

4: if ¢t Cyan then Accepting spiral found!
5: Exit: cycle detected

6: if t[Z Red then Spiral on t would give spiral from Red
7 dfsRed(t)

UNIVERSITY OF TWENTE. LTL for Timed Automata 8/1

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := CyanU {s}
for all successors t of s do
if tZ BlueU Cyan then This goes wrong, unfortunately!
dfsBlue(t)
if s is accepting then
dfsRed(s)

Blue, Cyan := Blue U {s}, Cyan\{s}

CONNRORCIE-ENCD

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red U {s}

3 for all successors t of s do

4: if ¢t Cyan then Accepting spiral found!
5: Exit: cycle detected

6: if t[Z Red then Spiral on t would give spiral from Red
7 dfsRed(t)

UNIVERSITY OF TWENTE. LTL for Timed Automata 8/1

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := CyanU {s}

3: for all successors t of s do

4: if t ¢ BlueU Cyan At [Z Red then Prune the blue search
5: dfsBlue(t)

6: if s is accepting then

7 dfsRed(s)

8: Blue, Cyan := Blue U {s}, Cyan\{s}

Red search find cycles on accepting states
1: procedure dfsRed(s) Postcondition: no accepting spiral reachable

2: Red := Red U {s}

3 for all successors t of s do

4: if ¢t Cyan then Accepting spiral found!
5: Exit: cycle detected

6: if t[Z Red then Spiral on t would give spiral from Red
7 dfsRed(t)

UNIVERSITY OF TWENTE. LTL for Timed Automata 8/1

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t C Blue:

Accepting cycle s;—s5 not detected

UNIVERSITY OF TWENTE. LTL for Timed Automata 9/1

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t C Blue:

Accepting cycle s;—s5 not detected

» The blue search proceeds via sy, s1, S2,

UNIVERSITY OF TWENTE. LTL for Timed Automata 9/1

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t C Blue:

Accepting cycle s;—s5 not detected

» The blue search proceeds via sp, s1, S2, then backtracks via s; to s3

> Now since s5 C Blue, the blue search is pruned at s3

UNIVERSITY OF TWENTE. LTL for Timed Automata 9/1

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t C Blue:

Accepting cycle s;—s5 not detected

» The blue search proceeds via sp, s1, S2, then backtracks via s; to s3
> Now since s5 C Blue, the blue search is pruned at s3

> s3 € Acc, so a red search is started: s3, s5, s, Sa, S5

UNIVERSITY OF TWENTE. LTL for Timed Automata 9/1

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t C Blue:

Accepting cycle s;—s5 not detected

>

vV V. vY

The blue search proceeds via s, s1, s2, then backtracks via s; to s3
Now since s; C Blue, the blue search is pruned at s;

s3 € Acc, so a red search is started: s3, s}, si, S1, Ss

The only accepting cycle ss—ss is erroneously made red

Note: accepting states are not visited in post-order

UNIVERSITY OF TWENTE. LTL for Timed Automata

Multi-core Nested DFS [Laarman/Evangelista et al, ATVA'11,12]

Mg

Parallel NDFS algorithm — shared hashtable

» Basic idea: n workers perform NDF Search

> Visited states are stored in a shared hashtable

» All workers use their own separate set of colors

> Speeds up , what about full verification?
> visit larger states earlier due to

UNIVERSITY OF TWENTE. LTL for Timed Automata 10/1

Multi-core Nested DFS [Laarman/Evangelista et al, ATVA'11,12]

Mg

Parallel NDFS algorithm — shared hashtable

» Basic idea: n workers perform NDF Search

> Visited states are stored in a shared hashtable

» All workers use their own separate set of colors

> Speeds up , what about full verification?
> visit larger states earlier due to

» Collaboration between NDFS workers

> , workers keep their own cyan stack
» Workers backtrack on parts finished by others
» Complicated to restore , reasonable

UNIVERSITY OF TWENTE. LTL for Timed Automata 10/1

Experiments: speedup up to 48 cores

Checking LTL on Timed Automata BFS Reachability on Timed Automata
50~ | Model Model
csma -e— fischer6
— :‘ddlh X A train-crossing-stdred-5
o ischer- " |+ wain-gate-N10
—F fischer-2 ﬁF//ﬁ» ¢ train-gate-N9
train-gate - [~ viking15
B 0 7 viking17
a 30 - a
3 3
o]
& &,
10- 10
") 10 20 30 40 20 0 40
Threads Threads
Experiments with and — open source

hours — minutes — seconds

Multi-Core Reachability for Timed Automata, FORMATS'12

UNIVERSITY OF TWENTE. LTL for Timed Automata 1 /1

Conclusion

Contributions

» Subsumption in Timed Biichi Automata (open problem)

> introduces spurious counter examples
> preserves some structural properties

UNIVERSITY OF TWENTE. LTL for Timed Automata 12/1

opaal-modelchecker.com/
fmt.cs.utwente.nl/tools/ltsmin/

Conclusion

Contributions

» Subsumption in Timed Biichi Automata (open problem)

> introduces spurious counter examples
> preserves some structural properties

» Checking for
> Use to prune Nested DFS where possible
> algorithm for Timed Buichi Automata

UNIVERSITY OF TWENTE. LTL for Timed Automata 12/1

opaal-modelchecker.com/
fmt.cs.utwente.nl/tools/ltsmin/

Conclusion

Contributions

» Subsumption in Timed Biichi Automata (open problem)

> introduces spurious counter examples
> preserves some structural properties

» Checking for
> Use to prune Nested DFS where possible
> algorithm for Timed Buichi Automata

DBM
library 1t12ba
Uppaal : opaal successor
xml—file ! generator C++ code

> through OPAAL and LTSMIN

» opaal-modelchecker.com/
» fmt.cs.utwente.nl/tools/ltsmin/

UNIVERSITY OF TWENTE. LTL for Timed Automata 12/1

opaal-modelchecker.com/
fmt.cs.utwente.nl/tools/ltsmin/

