
Model checking LTL for Timed Automata

– Multi-core Nested DFS with Subsumption –

 

 

   UNIVERSITY OF TWENTE. 
Formal Methods & Tools.

Alfons Laarman, Mads Olesen,
Andreas Dalsgaard, Kim Larsen,
Jaco van de Pol

CAV’13, St. Petersburg



... ...

Kim celebrating the CAV 2013 Award

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 2 / 1



... ...

Timed Büchi Automata [Alur,Dill’94]

`0 `1 `2

y ≤ 2 y ≤ 2

x := 0, y := 0

y := 0

[x > 2] x := 0, y := 0

Ingredients

I locations (`0, `1, `2), can be initial, accepting or neither

I transitions, governed by real-valued clocks (x , y)

I timed runs should respect clock guards, resets, invariants

`0,

(
0
0

)
2.7−→ `0,

(
0
0

)
1.8−→ `1,

(
1.8
0

)
0.5−→ `2,

(
0
0

)
2.0−→ `1,

(
2.0
2.0

)
6→

Question: is the Büchi language empty? . . . . . . . no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 3 / 1



... ...

Timed Büchi Automata [Alur,Dill’94]

`0 `1 `2

y ≤ 2 y ≤ 2

x := 0, y := 0

y := 0

[x > 2] x := 0, y := 0

Ingredients

I locations (`0, `1, `2), can be initial, accepting or neither

I transitions, governed by real-valued clocks (x , y)

I timed runs should respect clock guards, resets, invariants

`0,

(
0
0

)

2.7−→ `0,

(
0
0

)
1.8−→ `1,

(
1.8
0

)
0.5−→ `2,

(
0
0

)
2.0−→ `1,

(
2.0
2.0

)
6→

Question: is the Büchi language empty? . . . . . . . no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 3 / 1



... ...

Timed Büchi Automata [Alur,Dill’94]

`0 `1 `2

y ≤ 2 y ≤ 2

x := 0, y := 0

y := 0

[x > 2] x := 0, y := 0

Ingredients

I locations (`0, `1, `2), can be initial, accepting or neither

I transitions, governed by real-valued clocks (x , y)

I timed runs should respect clock guards, resets, invariants

`0,

(
0
0

)
2.7−→ `0,

(
0
0

)

1.8−→ `1,

(
1.8
0

)
0.5−→ `2,

(
0
0

)
2.0−→ `1,

(
2.0
2.0

)
6→

Question: is the Büchi language empty? . . . . . . . no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 3 / 1



... ...

Timed Büchi Automata [Alur,Dill’94]

`0 `1 `2

y ≤ 2 y ≤ 2

x := 0, y := 0

y := 0

[x > 2] x := 0, y := 0

Ingredients

I locations (`0, `1, `2), can be initial, accepting or neither

I transitions, governed by real-valued clocks (x , y)

I timed runs should respect clock guards, resets, invariants

`0,

(
0
0

)
2.7−→ `0,

(
0
0

)
1.8−→ `1,

(
1.8
0

)

0.5−→ `2,

(
0
0

)
2.0−→ `1,

(
2.0
2.0

)
6→

Question: is the Büchi language empty? . . . . . . . no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 3 / 1



... ...

Timed Büchi Automata [Alur,Dill’94]

`0 `1 `2

y ≤ 2 y ≤ 2

x := 0, y := 0

y := 0

[x > 2] x := 0, y := 0

Ingredients

I locations (`0, `1, `2), can be initial, accepting or neither

I transitions, governed by real-valued clocks (x , y)

I timed runs should respect clock guards, resets, invariants

`0,

(
0
0

)
2.7−→ `0,

(
0
0

)
1.8−→ `1,

(
1.8
0

)
0.5−→ `2,

(
0
0

)

2.0−→ `1,

(
2.0
2.0

)
6→

Question: is the Büchi language empty? . . . . . . . no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 3 / 1



... ...

Timed Büchi Automata [Alur,Dill’94]

`0 `1 `2

y ≤ 2 y ≤ 2

x := 0, y := 0

y := 0

[x > 2] x := 0, y := 0

Ingredients

I locations (`0, `1, `2), can be initial, accepting or neither

I transitions, governed by real-valued clocks (x , y)

I timed runs should respect clock guards, resets, invariants

`0,

(
0
0

)
2.7−→ `0,

(
0
0

)
1.8−→ `1,

(
1.8
0

)
0.5−→ `2,

(
0
0

)
2.0−→ `1,

(
2.0
2.0

)
6→

Question: is the Büchi language empty? . . . . . . . no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 3 / 1



... ...

Timed Büchi Automata [Alur,Dill’94]

`0 `1 `2

y ≤ 2 y ≤ 2

x := 0, y := 0

y := 0

[x > 2] x := 0, y := 0

Ingredients

I locations (`0, `1, `2), can be initial, accepting or neither

I transitions, governed by real-valued clocks (x , y)

I timed runs should respect clock guards, resets, invariants

`0,

(
0
0

)
2.7−→ `0,

(
0
0

)
1.8−→ `1,

(
1.8
0

)
0.5−→ `2,

(
0
0

)
2.0−→ `1,

(
2.0
2.0

)
6→

Question: is the Büchi language empty? . . . . . . . no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 3 / 1



... ...

Timed Büchi Automata [Alur,Dill’94]

`0 `1 `2

y ≤ 2 y ≤ 2

x := 0, y := 0

y := 0

[x > 2] x := 0, y := 0

Ingredients

I locations (`0, `1, `2), can be initial, accepting or neither

I transitions, governed by real-valued clocks (x , y)

I timed runs should respect clock guards, resets, invariants

`0,

(
0
0

)
2.7−→ `0,

(
0
0

)
1.8−→ `1,

(
1.8
0

)
0.5−→ `2,

(
0
0

)
2.0−→ `1,

(
2.0
2.0

)
6→

Question: is the Büchi language empty? . . . . . . . no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 3 / 1



... ...

Finite representation: zone abstraction, extrapolation

`0 `1 `2

y ≤ 2 y ≤ 2

y := 0

[x > 2] x := 0, y := 0x := 0, y := 0

Finite representation by zones (DBM) [Dill’89] [Daws,Tripakis’98]

I A zone is a set of constraints
I Finite abstractions: k-extrapolation, LU-abstraction

(taking into account Lower/Upperbounds in the TBA)

`0,Z0 `1,Z1 `2,Z2

`1,Z2

No accepting run!

Z0 := y = x
Z1 := y ≤ x ∧ y ≤ 2
Z2 := y = x ∧ y ≤ 2

Subsumption:
Z2 ⊆ Z1, so (`1,Z2) v (`1,Z1)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 4 / 1



... ...

Finite representation: zone abstraction, extrapolation

`0 `1 `2

y ≤ 2 y ≤ 2

y := 0

[x > 2] x := 0, y := 0x := 0, y := 0

Finite representation by zones (DBM) [Dill’89] [Daws,Tripakis’98]

I A zone is a set of constraints
I Finite abstractions: k-extrapolation, LU-abstraction

(taking into account Lower/Upperbounds in the TBA)

`0,Z0

`1,Z1 `2,Z2

`1,Z2

No accepting run!

Z0 := y = x

Z1 := y ≤ x ∧ y ≤ 2
Z2 := y = x ∧ y ≤ 2

Subsumption:
Z2 ⊆ Z1, so (`1,Z2) v (`1,Z1)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 4 / 1



... ...

Finite representation: zone abstraction, extrapolation

`0 `1 `2

y ≤ 2 y ≤ 2

y := 0

[x > 2] x := 0, y := 0x := 0, y := 0

Finite representation by zones (DBM) [Dill’89] [Daws,Tripakis’98]

I A zone is a set of constraints
I Finite abstractions: k-extrapolation, LU-abstraction

(taking into account Lower/Upperbounds in the TBA)

`0,Z0 `1,Z1

`2,Z2

`1,Z2

No accepting run!

Z0 := y = x
Z1 := y ≤ x ∧ y ≤ 2

Z2 := y = x ∧ y ≤ 2

Subsumption:
Z2 ⊆ Z1, so (`1,Z2) v (`1,Z1)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 4 / 1



... ...

Finite representation: zone abstraction, extrapolation

`0 `1 `2

y ≤ 2 y ≤ 2

y := 0

[x > 2] x := 0, y := 0x := 0, y := 0

Finite representation by zones (DBM) [Dill’89] [Daws,Tripakis’98]

I A zone is a set of constraints
I Finite abstractions: k-extrapolation, LU-abstraction

(taking into account Lower/Upperbounds in the TBA)

`0,Z0 `1,Z1 `2,Z2

`1,Z2

No accepting run!

Z0 := y = x
Z1 := y ≤ x ∧ y ≤ 2
Z2 := y = x ∧ y ≤ 2

Subsumption:
Z2 ⊆ Z1, so (`1,Z2) v (`1,Z1)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 4 / 1



... ...

Finite representation: zone abstraction, extrapolation

`0 `1 `2

y ≤ 2 y ≤ 2

y := 0

[x > 2] x := 0, y := 0x := 0, y := 0

Finite representation by zones (DBM) [Dill’89] [Daws,Tripakis’98]

I A zone is a set of constraints
I Finite abstractions: k-extrapolation, LU-abstraction

(taking into account Lower/Upperbounds in the TBA)

`0,Z0 `1,Z1 `2,Z2

`1,Z2

No accepting run!

Z0 := y = x
Z1 := y ≤ x ∧ y ≤ 2
Z2 := y = x ∧ y ≤ 2

Subsumption:
Z2 ⊆ Z1, so (`1,Z2) v (`1,Z1)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 4 / 1



... ...

Finite representation: zone abstraction, extrapolation

`0 `1 `2

y ≤ 2 y ≤ 2

y := 0

[x > 2] x := 0, y := 0x := 0, y := 0

Finite representation by zones (DBM) [Dill’89] [Daws,Tripakis’98]

I A zone is a set of constraints
I Finite abstractions: k-extrapolation, LU-abstraction

(taking into account Lower/Upperbounds in the TBA)

`0,Z0 `1,Z1 `2,Z2

`1,Z2

w
No accepting run!

Z0 := y = x
Z1 := y ≤ x ∧ y ≤ 2
Z2 := y = x ∧ y ≤ 2

Subsumption:
Z2 ⊆ Z1, so (`1,Z2) v (`1,Z1)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 4 / 1



... ...

Subsumption, or inclusion abstraction

Why explore a state again, if it is subsumed by a previous state?

Known results [Behrmann et al’04] [Tripakis’09] [Li’09]

I k-extrapolation and LU-abstraction preserves reachability of locations

I k-extrapolation and LU-abstraction also preserve Büchi emptiness

I subsumption preserves reachability of locations as well

s0 s1

s2 s3

w

Zone abstraction

s0

s2

s3

s1

s3 v s1

s0 s1

s2

subsumption

Open problem posed in [Tripakis’09]

Is emptiness of Timed Büchi Automata preserved by subsumption? NO

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 5 / 1



... ...

Subsumption, or inclusion abstraction

Why explore a state again, if it is subsumed by a previous state?

Known results [Behrmann et al’04] [Tripakis’09] [Li’09]

I k-extrapolation and LU-abstraction preserves reachability of locations

I k-extrapolation and LU-abstraction also preserve Büchi emptiness

I subsumption preserves reachability of locations as well

s0 s1

s2 s3

w

Zone abstraction

s0

s2

s3

s1

s3 v s1

s0 s1

s2

subsumption

Open problem posed in [Tripakis’09]

Is emptiness of Timed Büchi Automata preserved by subsumption? NO

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 5 / 1



... ...

Subsumption, or inclusion abstraction

Why explore a state again, if it is subsumed by a previous state?

Known results [Behrmann et al’04] [Tripakis’09] [Li’09]

I k-extrapolation and LU-abstraction preserves reachability of locations

I k-extrapolation and LU-abstraction also preserve Büchi emptiness

I subsumption preserves reachability of locations as well

s0 s1

s2 s3

w

Zone abstraction

s0

s2

s3

s1

s3 v s1

s0 s1

s2

subsumption

Open problem posed in [Tripakis’09]

Is emptiness of Timed Büchi Automata preserved by subsumption?

NO

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 5 / 1



... ...

Subsumption, or inclusion abstraction

Why explore a state again, if it is subsumed by a previous state?

Known results [Behrmann et al’04] [Tripakis’09] [Li’09]

I k-extrapolation and LU-abstraction preserves reachability of locations

I k-extrapolation and LU-abstraction also preserve Büchi emptiness

I subsumption preserves reachability of locations as well

s0 s1

s2 s3

w

Zone abstraction

s0

s2

s3

s1

s3 v s1

s0 s1

s2

subsumption

Open problem posed in [Tripakis’09]

Is emptiness of Timed Büchi Automata preserved by subsumption? NO

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 5 / 1



... ...

Analysis of accepting cycles/spirals with subsumption

v is a simulation relation:

s ′

s t

v

→

v is a finite abstraction

Lemma: If s has an accepting cycle then any s ′ w s has it as well
Lemma: If t ′ has an accepting spiral then t ′ has an accepting cycle

Preservation of accepting cycles Proof Sketch

s ′

s t t

v

→∗ →+

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 6 / 1



... ...

Analysis of accepting cycles/spirals with subsumption

v is a simulation relation:

s ′

s t

v

→

t ′→

v

v is a finite abstraction

Lemma: If s has an accepting cycle then any s ′ w s has it as well
Lemma: If t ′ has an accepting spiral then t ′ has an accepting cycle

Preservation of accepting cycles Proof Sketch

s ′

s t t

v

→∗ →+

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 6 / 1



... ...

Analysis of accepting cycles/spirals with subsumption

v is a simulation relation:

s ′

s t

v

→

t ′→

v

v is a finite abstraction

Lemma: If s has an accepting cycle then any s ′ w s has it as well
Lemma: If t ′ has an accepting spiral then t ′ has an accepting cycle

Preservation of accepting cycles Proof Sketch

s ′

s t t

v

→∗ →+

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 6 / 1



... ...

Analysis of accepting cycles/spirals with subsumption

v is a simulation relation:

s ′

s t

v

→

t ′→

v

v is a finite abstraction

s’

s t

Lemma: If s has an accepting cycle then any s ′ w s has it as well
Lemma: If t ′ has an accepting spiral then t ′ has an accepting cycle

Preservation of accepting cycles Proof Sketch

s ′

s t t

v

→∗ →+

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 6 / 1



... ...

Analysis of accepting cycles/spirals with subsumption

v is a simulation relation:

s ′

s t

v

→

t ′→

v

v is a finite abstraction

s’ t’

t’’

s t

Lemma: If s has an accepting cycle then any s ′ w s has it as well
Lemma: If t ′ has an accepting spiral then t ′ has an accepting cycle

Preservation of accepting cycles Proof Sketch

s ′

s t t

v

→∗ →+

t ′ t ′′→∗ →+

v v

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 6 / 1



... ...

Analysis of accepting cycles/spirals with subsumption

v is a simulation relation:

s ′

s t

v

→

t ′→

v

v is a finite abstraction

s’ t’

t’’

s t

t’’’

Lemma: If s has an accepting cycle then any s ′ w s has it as well
Lemma: If t ′ has an accepting spiral then t ′ has an accepting cycle

Preservation of accepting cycles Proof Sketch

s ′

s t t

v

→∗ →+

t ′ t ′′→∗ →+

v v

· · · · · ·

· · · · · ·

t ′′′

t

→+ →+

→+ →+

v
 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 6 / 1



... ...

Analysis of accepting cycles/spirals with subsumption

v is a simulation relation:

s ′

s t

v

→

t ′→

v

v is a finite abstraction

s’ t’

t’’

s t

t’’’

Lemma: If s has an accepting cycle then any s ′ w s has it as well
Lemma: If t ′ has an accepting spiral then t ′ has an accepting cycle

Preservation of accepting cycles Proof Sketch

s ′

s t t

v

→∗ →+

t ′ t ′′→∗ →+

v v

· · · x · · ·

· · · · · ·

t ′′′

t

→+ →+

→+ →+

v

x

t

→+

→+

v

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 6 / 1



... ...

Recall: Nested Depth First Search [CVWY’92] [Holzmann’92]

I Blue search: explore graph in DFS order
I states on the blue search stack are cyan

I on backtracking from an accepting state:

I Red search: find an accepting cycle

I exit as soon as the cyan stack is reached

I Linear time, depends on post-order

Blue search

1: procedure dfsBlue(s)
2: add s to Cyan

3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan then
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: move s from Cyan to Blue

Red search

1: procedure dfsRed(s)
2: add s to Red
3: for all successors t of s do

4: if t ∈ Cyan then
5: Exit: cycle detected

6: if t 6∈ Red then
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 7 / 1



... ...

Recall: Nested Depth First Search [CVWY’92] [Holzmann’92]

I Blue search: explore graph in DFS order
I states on the blue search stack are cyan

I on backtracking from an accepting state:

I Red search: find an accepting cycle

I exit as soon as the cyan stack is reached

I Linear time, depends on post-order

Blue search

1: procedure dfsBlue(s)
2: add s to Cyan
3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan then
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: move s from Cyan to Blue

Red search

1: procedure dfsRed(s)
2: add s to Red
3: for all successors t of s do

4: if t ∈ Cyan then
5: Exit: cycle detected

6: if t 6∈ Red then
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 7 / 1



... ...

Recall: Nested Depth First Search [CVWY’92] [Holzmann’92]

I Blue search: explore graph in DFS order
I states on the blue search stack are cyan
I on backtracking from an accepting state:

I Red search: find an accepting cycle

I exit as soon as the cyan stack is reached

I Linear time, depends on post-order

Blue search

1: procedure dfsBlue(s)
2: add s to Cyan
3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan then
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: move s from Cyan to Blue

Red search

1: procedure dfsRed(s)
2: add s to Red
3: for all successors t of s do

4: if t ∈ Cyan then
5: Exit: cycle detected

6: if t 6∈ Red then
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 7 / 1



... ...

Recall: Nested Depth First Search [CVWY’92] [Holzmann’92]

I Blue search: explore graph in DFS order
I states on the blue search stack are cyan
I on backtracking from an accepting state:

I Red search: find an accepting cycle

I exit as soon as the cyan stack is reached

I Linear time, depends on post-order

Blue search

1: procedure dfsBlue(s)
2: add s to Cyan
3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan then
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: move s from Cyan to Blue

Red search

1: procedure dfsRed(s)
2: add s to Red
3: for all successors t of s do

4: if t ∈ Cyan then
5: Exit: cycle detected

6: if t 6∈ Red then
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 7 / 1



... ...

Recall: Nested Depth First Search [CVWY’92] [Holzmann’92]

I Blue search: explore graph in DFS order
I states on the blue search stack are cyan
I on backtracking from an accepting state:

I Red search: find an accepting cycle
I exit as soon as the cyan stack is reached

I Linear time, depends on post-order

Blue search

1: procedure dfsBlue(s)
2: add s to Cyan
3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan then
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: move s from Cyan to Blue

Red search

1: procedure dfsRed(s)
2: add s to Red
3: for all successors t of s do
4: if t ∈ Cyan then
5: Exit: cycle detected

6: if t 6∈ Red then
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 7 / 1



... ...

Recall: Nested Depth First Search [CVWY’92] [Holzmann’92]

I Blue search: explore graph in DFS order
I states on the blue search stack are cyan
I on backtracking from an accepting state:

I Red search: find an accepting cycle
I exit as soon as the cyan stack is reached

I Linear time, depends on post-order

Blue search

1: procedure dfsBlue(s)
2: add s to Cyan
3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan then
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: move s from Cyan to Blue

Red search

1: procedure dfsRed(s)
2: add s to Red
3: for all successors t of s do
4: if t ∈ Cyan then
5: Exit: cycle detected

6: if t 6∈ Red then
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 7 / 1



... ...

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := Cyan ∪ {s}
3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan then
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: Blue,Cyan := Blue ∪ {s},Cyan\{s}

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red ∪ {s}
3: for all successors t of s do
4: if t ∈ Cyan then
5: Exit: cycle detected

6: if t 6∈ Red then
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 8 / 1



... ...

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := Cyan ∪ {s}
3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan then
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: Blue,Cyan := Blue ∪ {s},Cyan\{s}

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red ∪ {s}
3: for all successors t of s do
4: if t w Cyan then Accepting spiral found!
5: Exit: cycle detected

6: if t 6∈ Red then
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 8 / 1



... ...

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := Cyan ∪ {s}
3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan then
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: Blue,Cyan := Blue ∪ {s},Cyan\{s}

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red ∪ {s}
3: for all successors t of s do
4: if t w Cyan then Accepting spiral found!
5: Exit: cycle detected

6: if t 6v Red then Spiral on t would give spiral from Red
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 8 / 1



... ...

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := Cyan ∪ {s}
3: for all successors t of s do
4: if t 6v Blue ∪ Cyan then This goes wrong, unfortunately!
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: Blue,Cyan := Blue ∪ {s},Cyan\{s}

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red ∪ {s}
3: for all successors t of s do
4: if t w Cyan then Accepting spiral found!
5: Exit: cycle detected

6: if t 6v Red then Spiral on t would give spiral from Red
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 8 / 1



... ...

Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := Cyan ∪ {s}
3: for all successors t of s do
4: if t 6∈ Blue ∪ Cyan ∧ t 6v Red then Prune the blue search
5: dfsBlue(t)

6: if s is accepting then
7: dfsRed(s)

8: Blue,Cyan := Blue ∪ {s},Cyan\{s}

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red ∪ {s}
3: for all successors t of s do
4: if t w Cyan then Accepting spiral found!
5: Exit: cycle detected

6: if t 6v Red then Spiral on t would give spiral from Red
7: dfsRed(t)

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 8 / 1



... ...

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t v Blue:
s0

s1

s ′1

s2

s ′2

s4

s3

s5

Accepting cycle s4–s5 not detected

I The blue search proceeds via s0, s1, s2, then backtracks via s1 to s3

I Now since s ′2 v Blue, the blue search is pruned at s3

I s3 ∈ Acc, so a red search is started: s3, s ′2, s ′1, s4, s5

I The only accepting cycle s4–s5 is erroneously made red

I Note: accepting states are not visited in post-order

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 9 / 1



... ...

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t v Blue:
s0

s1

s ′1

s2

s ′2

s4

s3

s5

Accepting cycle s4–s5 not detected

I The blue search proceeds via s0, s1, s2,

then backtracks via s1 to s3

I Now since s ′2 v Blue, the blue search is pruned at s3

I s3 ∈ Acc, so a red search is started: s3, s ′2, s ′1, s4, s5

I The only accepting cycle s4–s5 is erroneously made red

I Note: accepting states are not visited in post-order

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 9 / 1



... ...

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t v Blue:
s0

s1

s ′1

s2

s ′2

s4

s3

s5

Accepting cycle s4–s5 not detected

I The blue search proceeds via s0, s1, s2, then backtracks via s1 to s3

I Now since s ′2 v Blue, the blue search is pruned at s3

I s3 ∈ Acc, so a red search is started: s3, s ′2, s ′1, s4, s5

I The only accepting cycle s4–s5 is erroneously made red

I Note: accepting states are not visited in post-order

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 9 / 1



... ...

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t v Blue:
s0

s1

s ′1

s2

s ′2

s4

s3

s5

Accepting cycle s4–s5 not detected

I The blue search proceeds via s0, s1, s2, then backtracks via s1 to s3

I Now since s ′2 v Blue, the blue search is pruned at s3

I s3 ∈ Acc, so a red search is started: s3, s ′2, s ′1, s4, s5

I The only accepting cycle s4–s5 is erroneously made red

I Note: accepting states are not visited in post-order

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 9 / 1



... ...

Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t v Blue:
s0

s1

s ′1

s2

s ′2

s4

s3

s5

Accepting cycle s4–s5 not detected

I The blue search proceeds via s0, s1, s2, then backtracks via s1 to s3

I Now since s ′2 v Blue, the blue search is pruned at s3

I s3 ∈ Acc, so a red search is started: s3, s ′2, s ′1, s4, s5

I The only accepting cycle s4–s5 is erroneously made red

I Note: accepting states are not visited in post-order

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 9 / 1



... ...

Multi-core Nested DFS [Laarman/Evangelista et al, ATVA’11,12]

Parallel NDFS algorithm – shared hashtable

I Basic idea: n workers perform independent random NDF Search
I Visited states are stored in a shared hashtable
I All workers use their own separate set of colors
I Speeds up bug hunting, what about full verification?
I Better subsumption: visit larger states earlier due to BFS-effect

I Collaboration between NDFS workers
I Share red and blue globally, workers keep their own cyan stack
I Workers backtrack on parts finished by others
I Complicated to restore post-order, reasonable scalability

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 10 / 1



... ...

Multi-core Nested DFS [Laarman/Evangelista et al, ATVA’11,12]

Parallel NDFS algorithm – shared hashtable

I Basic idea: n workers perform independent random NDF Search
I Visited states are stored in a shared hashtable
I All workers use their own separate set of colors
I Speeds up bug hunting, what about full verification?
I Better subsumption: visit larger states earlier due to BFS-effect

I Collaboration between NDFS workers
I Share red and blue globally, workers keep their own cyan stack
I Workers backtrack on parts finished by others
I Complicated to restore post-order, reasonable scalability

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 10 / 1



... ...

Experiments: speedup up to 48 cores

Checking LTL on Timed Automata

0

10

20

30

40

50

●

●

●

●

●

●
●

●

0 10 20 30 40 50
Threads

S
pe

ed
up

Model

● csma

fddi

fischer−1

fischer−2

train−gate

BFS Reachability on Timed Automata

0

10

20

30

40

●●
●

●

●

●

●

● ●
●

0 10 20 30 40 50
Threads

S
pe

ed
up

Model

● fischer6

train−crossing−stdred−5

train−gate−N10

train−gate−N9

viking15

viking17

Experiments with opaal and LTSmin – open source
hours −→ minutes −→ seconds

Multi-Core Reachability for Timed Automata, FORMATS’12

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 11 / 1



... ...

Conclusion

Contributions

I Subsumption in Timed Büchi Automata (open problem)
I introduces spurious counter examples
I preserves some structural properties

I Checking LTL properties for Uppaal timed automata
I Use subsumption to prune Nested DFS where possible
I Multi-core NDFS algorithm for Timed Büchi Automata

property
DBM
library

result
verification

mc−NDFS
LTSmin

C++ code
successoropaal

xml−file generator

ltl2ba

Uppaal

LTL

I Open source through opaal and LTSmin
I opaal-modelchecker.com/
I fmt.cs.utwente.nl/tools/ltsmin/

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 12 / 1

opaal-modelchecker.com/
fmt.cs.utwente.nl/tools/ltsmin/


... ...

Conclusion

Contributions

I Subsumption in Timed Büchi Automata (open problem)
I introduces spurious counter examples
I preserves some structural properties

I Checking LTL properties for Uppaal timed automata
I Use subsumption to prune Nested DFS where possible
I Multi-core NDFS algorithm for Timed Büchi Automata

property
DBM
library

result
verification

mc−NDFS
LTSmin

C++ code
successoropaal

xml−file generator

ltl2ba

Uppaal

LTL

I Open source through opaal and LTSmin
I opaal-modelchecker.com/
I fmt.cs.utwente.nl/tools/ltsmin/

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 12 / 1

opaal-modelchecker.com/
fmt.cs.utwente.nl/tools/ltsmin/


... ...

Conclusion

Contributions

I Subsumption in Timed Büchi Automata (open problem)
I introduces spurious counter examples
I preserves some structural properties

I Checking LTL properties for Uppaal timed automata
I Use subsumption to prune Nested DFS where possible
I Multi-core NDFS algorithm for Timed Büchi Automata

property
DBM
library

result
verification

mc−NDFS
LTSmin

C++ code
successoropaal

xml−file generator

ltl2ba

Uppaal

LTL

I Open source through opaal and LTSmin
I opaal-modelchecker.com/
I fmt.cs.utwente.nl/tools/ltsmin/

 

 

   UNIVERSITY OF TWENTE. LTL for Timed Automata 12 / 1

opaal-modelchecker.com/
fmt.cs.utwente.nl/tools/ltsmin/

