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Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1



Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

()

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1



Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1



Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8
{o, (0> — Ao, <0> — {1, ( 0 >

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1



Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8\ o5 0
{o, (0> — Ao, <0> — {1, ( 0 > — {3, (O)

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1



Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8\ o5 0\ 20 2.0
(o) 0 (g) o () 2 en ) 22 (5g)

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1



Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8\ o5 0\ 20 2.0
(o) 0 g) 20 (5) e (5) = (35) #

UNIVERSITY OF TWENTE. LTL for Timed Automata 3/1



Timed Buchi Automata [Alur,Dill'94]

Ingredients

> locations (4o, ¢1, £2), can be initial, accepting or neither
> transitions, governed by real-valued clocks (x, y)

» timed runs should respect clock guards, resets, invariants

0\ 27 0\ 18 1.8\ o5 0\ 20 2.0
(o) 0 (g) o () 2 en ) 22 (5g)

Question: is the Biichi language empty? ....... no counterexample

Does a (non-zeno) timed run exist that visits an accepting state infinitely often?
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Finite representation: zone abstraction, extrapolation

Finite representation by zones (DBM) [Dill’89] [Daws, Tripakis'98]

> A zone is a set of constraints
> Finite abstractions: k-extrapolation, LU-abstraction
(taking into account Lower/Upperbounds in the TBA)
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Subsumption, or inclusion abstraction

Known results [Behrmann et al’'04] [Tripakis'09] [Li'09]

> k-extrapolation and LU-abstraction preserves of locations
» k-extrapolation and LU-abstraction also preserve

> preserves of locations as well
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Subsumption, or inclusion abstraction

Known results [Behrmann et al’'04] [Tripakis'09] [Li'09]

> k-extrapolation and LU-abstraction preserves of locations
» k-extrapolation and LU-abstraction also preserve

> preserves of locations as well
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Zone abstraction s3C 51 subsumption

Open problem posed in [Tripakis'09]

Is emptiness of Timed Biichi Automata preserved by subsumption? NO
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Analysis of accepting cycles/spirals with subsumption
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Recall: Nested Depth First Search [CVWY'92] [Holzmann'92]

> Blue search: explore graph in DFS order
» states on the blue search stack are cyan

Blue search

1. procedure dfsBlue(s)
2: add s to Cyan

8: move s from Cyan to Blue
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» states on the blue search stack are cyan
> on from an state:

Blue search

1. procedure dfsBlue(s)
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Recall: Nested Depth First Search [CVWY'92] [Holzmann'92]

> Blue search: explore graph in DFS order

» states on the blue search stack are cyan
> on from an state:

» Red search: find an accepting cycle
> exit as soon as the is reached

> Linear time, depends on post-order

Blue search

1. procedure dfsBlue(s)
2: add s to Cyan 1: procedure dfsRed(s)

3 for all successors t of s do 2: add s to Red

4 if t & Blue U Cyan then 3: for all successors t of s do

5: dfsBlue(t) 4: if t € Cyan then

6 if s is accepting then 5: Exit: cycle detected

7 dfsRed(s) 6: if t ¢ Red then

8 move s from Cyan to Blue 7: dfsRed(t)
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Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := CyanU {s}
for all successors t of s do
if t ¢ BlueU Cyan then
dfsBlue(t)
if s is accepting then
dfsRed(s)

Blue, Cyan := Blue U {s}, Cyan\{s}

CONNRORCIE-ENCD

Red search find cycles on accepting states

1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
2: Red := Red U {s}

3 for all successors t of s do
4: if t € Cyan then

5: Exit: cycle detected
6: if t¢ Red then

7 dfsRed(t)
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Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := CyanU {s}
for all successors t of s do
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Subsumption in Nested Depth First Search

Blue search find accepting states in post order

1: procedure dfsBlue(s)
2: Cyan := CyanU {s}

3: for all successors t of s do

4: if t ¢ BlueU Cyan At [Z Red then Prune the blue search
5: dfsBlue(t)

6: if s is accepting then

7 dfsRed(s)

8: Blue, Cyan := Blue U {s}, Cyan\{s}

Red search find cycles on accepting states
1: procedure dfsRed(s) Postcondition: no accepting spiral reachable
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3 for all successors t of s do
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Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t C Blue:

Accepting cycle s;—s5 not detected
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Accepting cycle s;—s5 not detected

» The blue search proceeds via sp, s1, S2, then backtracks via s; to s3
> Now since s5 C Blue, the blue search is pruned at s3

> s3 € Acc, so a red search is started: s3, s5, s, Sa, S5
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Subsumption on Blue is Unsound

Assume we would backtrack on t as soon as t C Blue:

Accepting cycle s;—s5 not detected

>

vV V. vY

The blue search proceeds via s, s1, s2, then backtracks via s; to s3
Now since s; C Blue, the blue search is pruned at s;

s3 € Acc, so a red search is started: s3, s}, si, S1, Ss

The only accepting cycle ss—ss is erroneously made red

Note: accepting states are not visited in post-order
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Multi-core Nested DFS [Laarman/Evangelista et al, ATVA'11,12]

Mg

Parallel NDFS algorithm — shared hashtable

» Basic idea: n workers perform NDF Search

> Visited states are stored in a shared hashtable

» All workers use their own separate set of colors

> Speeds up , what about full verification?
> visit larger states earlier due to

UNIVERSITY OF TWENTE. LTL for Timed Automata 10/1



Multi-core Nested DFS [Laarman/Evangelista et al, ATVA'11,12]

Mg

Parallel NDFS algorithm — shared hashtable

» Basic idea: n workers perform NDF Search

> Visited states are stored in a shared hashtable

» All workers use their own separate set of colors

> Speeds up , what about full verification?
> visit larger states earlier due to

» Collaboration between NDFS workers

> , workers keep their own cyan stack
» Workers backtrack on parts finished by others
» Complicated to restore , reasonable
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Experiments: speedup up to 48 cores

Checking LTL on Timed Automata BFS Reachability on Timed Automata
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Conclusion

Contributions

» Subsumption in Timed Biichi Automata (open problem)

> introduces spurious counter examples
> preserves some structural properties
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DBM
library 1t12ba
Uppaal : opaal successor
xml—file ! generator C++ code

> through OPAAL and LTSMIN

» opaal-modelchecker.com/
» fmt.cs.utwente.nl/tools/ltsmin/
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