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Abstract
The main advantages of Tarjan’s strongly connected component
(SCC) algorithm are its linear time complexity and ability to return
SCCs on-the-fly, while traversing or even generating the graph.
Until now, most parallel SCC algorithms sacrifice both: they run in
quadratic worst-case time and/or require the full graph in advance.

The current paper presents a novel parallel, on-the-fly SCC al-
gorithm. It preserves the linear-time property by letting workers
explore the graph randomly while carefully communicating par-
tially completed SCCs. We prove that this strategy is correct. For
efficiently communicating partial SCCs, we develop a concurrent,
iterable disjoint set structure (combining the union-find data struc-
ture with a cyclic list).

We demonstrate scalability on a 64-core machine using 75 real-
world graphs (from model checking and explicit data graphs), syn-
thetic graphs (combinations of trees, cycles and linear graphs), and
random graphs. Previous work did not show speedups for graphs
containing a large SCC. We observe that our parallel algorithm is
typically 10-30× faster compared to Tarjan’s algorithm for graphs
containing a large SCC. Comparable performance (with respect to
the current state-of-the-art) is obtained for graphs containing many
small SCCs.
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1. Introduction
Sorting vertices in depth-first search (DFS) postorder has turned
out to be important for efficiently solving various graph problems.
Tarjan first showed how to use DFS to find biconnected components
and SCCs in linear time [52]. Later it was used for planarity [26],
spanning trees [53], topological sort [14], fair cycle detection [16]
(a problem arising in model checking [57]), vertex covers [47], etc.

Due to irreversible trends in hardware, parallelizing these algo-
rithms has become an urgent issue. The current paper focuses on
solving this issue for SCC detection, improving SCC detection for
large SCCs. But before we discuss this contribution, we discuss the
problem of parallelizing DFS-based algorithms more generally.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851161

Traditional parallellization. Direct parallelization of DFS-based
algorithms is a challenge. Lexicographical, or ordered DFS is P-
complete [45], thus likely not parallelizable as under commonly
held assumptions, P-complete and NC problems are disjoint, and
the latter class contains all efficiently parallelizable problems.

Therefore, many researchers have diverted to phrasing these
graph problems as fix-point problems, which can be solved with
highly parallelizable breadth-first search (BFS) algorithms. E.g.,
we can rephrase the problem of finding all SCCs in G def

= (V,E),
to the problem of finding the SCC S ⊆ V to which a vertex
v ∈ V belongs, remove its SCC G′ = G \ S, and reiterate the
process on G′. S is equal to the intersection of vertices reachable
from v and vertices reachable from v after reversing the edges E
(backward reachability). This yields the quadratic (O(n ·(n+m)))
Forward-Backward (FB) algorithm (here, n = |V | and m = |E|).
Researchers repeatedly and successfully improved FB [13, 20, 25,
42, 48, 58], reducing the worst-case complexity to O(m · logn).

A negative side effect of the fix-point approach for SCC de-
tection is that the backward search requires storing all edges in
the graph. This can be done using e.g., adjacency lists or inci-
dence matrices [9] in various forms [30, Sec. 1.4.3], however
always at least takes O(m+ n) memory. On the contrary, Tar-
jan’s algorithm can run on-the-fly using an implicit graph defi-
nition IG = (v0, POST()), where v0 ∈ V is the initial vertex and
POST(v)

def
= {v′ ∈ V | (v, v′) ∈ E}, and requires onlyO(n) mem-

ory to store visited vertices and associated data. The on-the-fly
property is important when handling large graphs that occur in e.g.
verification [12], because it may allow the algorithm to terminate
early, after processing only a fraction (� n) of the graph. It also
benefits algorithms that rely on SCC detection but do not require
an explicit graph representation, e.g. [41].

Parallel Randomized DFS (PRDFS). A novel approach has shown
that the DFS-based algorithms can be parallelized more directly,
without sacrificing complexity and the on-the-fly property [8, 18,
19, 31–33, 36, 37, 46]. The idea is simple: (1) start from naively
running the sequential algorithm on p independent threads, and
(2) globally prune parts of the graph where a local search has
completed.

For scalability, the PRDFS approach relies on introducing ran-
domness to direct threads to different parts of a large graph. Hence
the approach can not be used for algorithms requiring lexicographi-
cal, or ordered DFS. But interestingly, none of the algorithms men-
tioned in the first paragraph require a fixed order on outgoing edges
of the vertices (except for topological sort, but for some of its ap-
plications the order is also irrelevant [5]), showing that the oft-cited
(cf. [4–6, 10, 11, 20]) theoretical result from Reif [45] does not ap-
ply directly. In fact, it might even be the case that the more general
problem of non-lexicographical DFS is in NC.

For correctness, the pruning process in PRDFS should carefully
limit the influence on the search order of other threads. Trivially,
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Table 1: Complexities of fix-point (e.g. [13]) and PRDFS solutions
(e.g. [46]) for problems taking linear time sequentially:O(n+m).
Here, n and m represent the number of vertices and edges in the
graph and p the number of processors.

Best-case (O) Worst-case (O)

Time Work Mem. Time Work Mem.

Traditional n+m
p

n+m n+m m · logn m · logn n+m

PRDFS n+m
p

n+m n n+m p · (n+m) p · n

in the case of SCCs, a thread running Tarjan can remove an SCC
from the graph as soon as it is completely detected [37], as long
as done atomically [46]. This would result in limited scalability for
graphs consisting of a single SCC [46]. But, more intricate ways of
pruning already showed better results in other areas [8, 18, 32, 33].

Time and work tradeoff play an import role in parallelizing
many of the above algorithms [50]. In the worst case, e.g. with a
linear graph as input, the PRDFS strategy cannot deliver scalability
– though neither can a fix-point based approach for such an input.
The amount of work performed by the algorithm in such cases is
O(p · (n+m)), i.e.: a factor p, i.e. the number of processors, com-
pared to sequential algorithm (O(n + m)). However, the runtime
never degrades beyond that of the sequential algorithmO(n+m),
under the assumption that the synchronization overhead is limited
to a constant factor. This is because the same strategy can be used
that makes the sequential algorithm efficient in the first place. Ta-
ble 1 compares the two parallelization approaches. The hypothesis
of the current paper is that a scalable PRDFS-based SCC algorithm
can solve parallel on-the-fly SCC decomposition.

Contribution: PRDFS for SCCs. The current paper provides a
novel PRDFS algorithm for detecting SCCs capable of pruning par-
tially completed SCCs. Prior works either lose the on-the-fly prop-
erty, exhibit a quadratic worst-case complexity, or show no scala-
bility for graphs containing a large SCC. Our proof of correctness
shows that the algorithm indeed prunes in such a way that the lo-
cal DFS property is preserved sufficiently. Experiments show good
scalability on real-world graphs, obtained by model checking, but
also on random and synthetic graphs. We furthermore show practi-
cal instances (on explicitly given graphs) for which existing work
seems to suffer from the quadratic worst-case complexity.

Our algorithm works by communicating partial SCCs via a
shared data structure based on a union-find tree for recording dis-
joint subsets [54]. In a sense therefore it is based on SCC algorithms
before Tarjan’s [40, 44]. The overhead however is limited to a factor
defined by the inverse Ackermann function α (rarely grows beyond
a constant 6), yielding a quasi-linear solution.

We avoid synchronization overhead by designing a new iterable
union-find data structure that allows for concurrent updates. The
subset iterator functions as a queue and allows for elements to be
removed from the subset, while at the same time the set can grow
(disjoint subsets are merged). This is realized by a separate cyclic
linked list, containing the nodes of the union-find tree. Removal
from the list is done by collapsing the list like a shutter, as shown
in Figure 1. All nodes therefore invariably point to the sublist,
while path compression makes sure that querying queued vertices
always takes an amortized constant time. Multiple workers can
concurrently explore and remove nodes from the sublist, or merge
disjoint sublists.

The paper is organized as follows: Section 2 provides prelim-
inaries on SCC decomposition and present a sequential set-based
SCC algorithm. Section 3 describes our new multi-core SCC al-

Figure 1: Schematic of the concurrent, iterable queue, which opera-
tion resembles a closing camera shutter (on the right). White nodes
(invariably on a cycle) are still queued, whereas gray nodes have
been dequeued (contracting the cycle), but can nonetheless be used
to query queued nodes, as they invariably point to white nodes.

gorithm with a proof of correctness. In Section 4, we provide an
implementation of our algorithm based on the iterable union-find
data structure and discuss its memory usage and runtime complex-
ity. The related work is discussed in Section 5. We discuss an ex-
perimental evaluation in Section 6 and provide conclusions in Sec-
tion 7.

2. Preliminaries
Given a directed graphG def

= (V,E), we denote an edge (v, v′) ∈ E
as v → v′. A path is a sequence of vertices v0 . . . vk, s.t. ∀0≤i≤k :
vi ∈ V and ∀0≤i<k : vi → vi+1. The transitive closure of E
is denoted v →∗ w, i.e. there is some path v . . . w ∈ V ∗. If a
vertex reaches itself via a non-empty path, the path is called a cycle.
Vertices v and w are strongly connected iff v →∗ w ∧ w →∗ v,
written as v ↔ w. A strongly connected component (SCC) is
defined as a maximal vertex set C ⊆ V s.t. ∀v, w ∈ C : v ↔ w.
For the graph’s size, we denote n def

= |V | and m def
= |E|.

Since we focus on on-the-fly graph processing, our algorithms
do not have access to the complete graph G, but instead access an
implicit definition:GI

def
= (v0, POST()), where v0 is an initial vertex

and POST(v) a successors function: POST(v)
def
= {w | v → w}. The

structural definition G is however used in our correctness proofs.

A sequential set-based SCC algorithm. One of the early SCC
algorithms, before Tarjan’s, was developed by Purdom [44], and
later optimized by Munro [40]. Like Tarjan’s algorithm it uses DFS,
but this is not explicitly mentioned (Tarjan was the first to do so).
Moreover, instead of keeping vertices on the stack, the set-based
algorithm stores partially completed SCCs (originally together with
a set of all outgoing vertices of these vertices). These sets can be
handled in amortized, quasi- constant time by storing them in a
union-find data structure (introduced below).

As a basis for our parallelization, we first generalize Munro’s al-
gorithm to store the vertices instead of edges of partially completed
SCCs. We also add the ability to collapse cycles into partial SCCs
immediately (as in Dijkstra [17]). We refer to this as the Set-Based
SCC algorithm, which is presented in Algorithm 1. Its essence is to
perform a DFS and collapse cycles to supernodes, which constitute
(partial) strongly connected components.

The strongly connected components are tracked in a collection
of disjoint sets, which we represent using a map: S : V → 2V

with the invariant: ∀v, w ∈ V : w ∈ S(v) ⇔ S(v) = S(w). As a
consequence, all the mapped sets disjoint and retrievable in the map
via any of its member. This construction allows us later to iterate
over the sets. A UNITE function merges two mapped sets, s.t. the
invariant is maintained, e.g.: let S(v) = {v} and S(w) = {w, x},
then UNITE(S, v, w) yields S(v) = S(w) = S(x) = {v, w, x}
keeping all other mappings the same.

The algorithm’s base DFS can be seen on Line 6, Line 8,
and Line 10-11 (ignoring the condition at Line 15). The recursive
procedure is called for every unvisited successor vertex w from
v. Because cycles are collapsed immediately at Line 12–14, the



Algorithm 1 Sequential set-based SCC algorithm

1: ∀v ∈ V : S(v) := {v}
2: DEAD := VISITED := ∅
3: R := ∅
4: SETBASED(v0)

5: procedure SETBASED(v)
6: VISITED := VISITED ∪ {v}
7: R.PUSH(v)
8: for each w ∈ POST(v) do
9: if w ∈ DEAD then continue . . . . . . . [already completed SCC]

10: else if w /∈ VISITED then . . . . . . . . . . . . . . . . [unvisited node w]
11: SETBASED(w)
12: else while S(v) 6= S(w) do . . . . . . . . . . . . . . . . . . [cycle found]
13: r := R.POP()
14: UNITE(S, r, R.TOP())
15: if v = R.TOP() then . . . . . . . . . . . . . . . [completely explored SCC]
16: report SCC S(v)
17: DEAD := DEAD ∪ S(v)
18: R.POP()

stack R is maintained independently of the program stack and
invariantly contains a subset of the latter (in the same order). Note
that the algorithm is called for an initial node v0 (Line 4), i.e. only
vertices reachable from v0 are considered. W.l.o.g. we assume that
all vertices are reachable from v0 (as defined with GI ).

The algorithm partitions vertices in three sets, s.t. ∀v∈V , either:
a. v ∈ DEAD, implying that v is part of a completely explored

(and reported) SCC,
b. v /∈ VISITED, (hence also v /∈ DEAD) implying that v has not

been encountered before by the algorithm, or
c. v ∈ LIVE, implying that v is part of a partial component, i.e.

LIVE
def
= VISITED \ DEAD.

It can be shown that the algorithm ensures that all supernodes for
the vertices onR are disjoint and together contain all LIVE vertices:⊎

v∈R

S(v) = LIVE (1)

As a consequence, the LIVE vertices can be reconstructed using the
map S and R, so we do not actually need a VISITED set except
for ease of explanation. Furthermore, it can be shown that all LIVE
vertices have a unique representation on R:

{S(v) ∩R | v ∈ LIVE} = {{r} | r ∈ R} (2)

Or, for each LIVE vertex v, its mapped supernode S(v) has exactly
one r ∈ R ∩ S(v) s.t. S(v) = S(r). Both equations play a role in
ensuring that the algorithm returns complete SCCs, explained next.
However, we will also use them in the subsequent section to guide
the parallelization of the algorithm.

From the above, we can illustrate how the algorithm decom-
poses SCCs. If a successor w of v is LIVE, it holds that ∃r ∈
R : S(r) = S(w). Such a LIVE vertex is handled by Line 12-
14, where the top two vertices from R are united, until r is en-
countered, or rather until it holds that S(r) = S(v) = S(w).
Because r has a path to v (an inherited invariant of the program
stack), all united components are indeed strongly connected, i.e.
lie on a cycle. Moreover, because of r’s uniqueness (Equation 2),
there is no other LIVE component part of this cycle (eventually this
guarantees completeness, i.e. that the algorithm reports a maximal
strongly connected component).

A completed SCC S(v) is reported and marked DEAD if v
remains on top of the R stack at Line 15, indicating that v could
not be united with any other vertices in R (lower on R).

Union-find. The disjoint set union or union-find [54] is a data
structure for storing and retrieving a disjoint partition of a set of
nodes. It also supports the merging of these partitions, allowing

an incremental coarsening of the partition. A set is identified by a
single node, the root or representative of the set. Other nodes in
the set use a parent pointer to direct towards the root (an inverted
tree structure). The FIND(a) operation recursively searches for the
root of the set and updates the parent pointer of a to directly
point to its root (path-compression). The operation UNITE(a, b)
involves directing the parent pointer from the root of a to the
root of b, or vice versa. By choosing the root with the highest
identifier (assuming a uniform distribution) as the ‘new’ root, the
tree remains asymptotically optimally structured [23]. Operations
on the union-find take amortized quasi-constant time, bounded by
the inverse Ackermann function α, which is practically constant.

Union-find is well-suited to maintain the SCC vertex sets as the
algorithm coarsens them (by collapsing cycles). In Algorithm 1,
the map S and the UNITE() operation can be implemented with a
union-find structure as shown by [22]. This results in quasi-linear
runtime complexity: each vertex is visited once (linear) executing
a constant number of union-find operations (‘quasi’).

3. A Multi-Core SCC Algorithm
The current section describes our multi-core SCC algorithm. The
algorithm is based on the PRDFS concept, where P workers ran-
domly process the graph starting from v0 and prune each other’s
search space by communicating parts of the graph that have been
processed. (This dynamically, but not perfectly, partitions the graph
across the workers, trading redundancy for communication.) To
the best of our knowledge, the current approach of doing this is
by ‘removing’ completed SCCs from the graph once identified by
one worker [46]. The random exploration strategy then would take
care of work load distribution. However, such a method would not
scale for graphs consisting of single large SCC. We demonstrate a
method that is able to communicate partially identified SCCs and
can therefore scale on more graphs.

The basis of the parallel algorithm is the sequential set-based
algorithm, developed in the previous section, which stores strongly
connected vertices in supernodes. For the time being, we do not
burden ourselves with the exact data structures and focus on solu-
tions that ease explanation. Afterwards, we show how the set oper-
ations are implemented.

Communication principles. We assume that each parallel worker
p starts a PRDFS search with a local stack Rp and randomly
searches the graph independently from v0. The upcoming algo-
rithm is based on four core principles about vertex communication:
1. If a worker encounters a cycle, it communicates this cycle

globally by uniting all vertices on the cycle to one supernode,
i.e. S becomes a shared structure. As a consequence, worker p
might unite multiple vertices that remain on the stack Rp′ of
some other worker p′, violating Equation 2 for now.

2. Because, the workers can no longer rely on the uniqueness
property, the algorithm looses its completeness property: It may
report partial SCCs because the collapsing stops early (before
the highest connected supernode on the stack is encountered).
To remedy this, we iterate over the contents of the supernodes
until all of its vertices have been processed.

3. Since other workers constantly grow partial SCCs in the shared
S, it is no longer useful to retain a local VISITED set. Equation 1
showed that indeed the LIVE vertices can be deduced from S
and R in the sequential algorithm. We choose to use an implicit
definition of LIVE so that a worker p only explores a vertex v
if there is no r ∈ Rp, s.t. v ∈ S(r), we say v is not part of an
Rp supernode. Thus vertices connected to a supernode on Rp

by some other worker p′ can be pruned by p.
4. If a worker p backtracks from a vertex, i.e. it finds that all

successors are either DEAD or part of some Rp supernode, it



records said vertex in a global set DONE for all other workers to
disregard. Here, a DONE vertex implies that it is fully explored.
Once all vertices in an SCC are DONE, the SCC is marked
DEAD.

The algorithm. The multi-core SCC algorithm, provided in Al-
gorithm 2, is similar to the sequential set-based one (Algorithm 1)
and follows the four discussed principles. Each worker p maintains
a local search stack (Rp), while S is shared among all workers for
globally communicating partial SCCs. We also globally share the
DONE and DEAD sets. For now we assume that all lines in the algo-
rithm can be executed atomically.

Algorithm 2 The UFSCC algorithm (code for worker p)

1: ∀v ∈ V : S(v) := {v} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [global S]
2: DEAD := DONE := ∅ . . . . . . . . . . . . . . . . . . . . [global DEAD and DONE]
3: ∀p ∈ [1 . . . p] : Rp := ∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [local Rp]
4: UFSCC1(v0)‖ . . . ‖UFSCCp(v0)

5: procedure UFSCCp(v)
6: Rp.PUSH(v)
7: while v′ ∈ S(v) \ DONE do
8: for each w ∈ RANDOM(POST(v′)) do
9: if w ∈ DEAD then continue . . . . . . . . . . . . . . . . . . . . [DEAD]

10: else if @w′ ∈ Rp : w ∈ S(w′) then . . . . . . . . . . . . . [NEW]
11: UFSCCp(w)
12: else while S(v) 6= S(w) do . . . . . . . . . . . . . . . . . . . . [LIVE]
13: r := Rp.POP()
14: UNITE(S, r, Rp.TOP())
15: DONE := DONE ∪ {v′}
16: if S(v) 6⊆ DEAD then DEAD := DEAD ∪ S(v); report SCC S(v)
17: if v = Rp.TOP() then Rp.POP()

First of all, instead of performing only a DFS, the algorithm also
iterates over vertices from S(v), at Line 7-15, until every v′ ∈ S(v)
is marked DONE (principle 2 and 4). Therefore, once this while-
loop is finished, we have that S(v) ⊆ DONE, hence the SCC may
be marked DEAD in Line 16. The if-condition at that line succeeds
if worker p wins the race to add S(v) to DEAD, ensuring that only
one worker reports the SCC. Thus, when UFSCC(v) terminates,
we ensure that v ∈ DEAD and that v is removed from the local
stack Rp (Line 17).

For every v′ ∈ S(v) \ DONE, the successors of v′ are consid-
ered in a randomized order via the RANDOM() function at Line 8
— according to PRDFS’ random search and prune strategy. After
the for-loop from Line 8-14, we infer that POST(v′) ⊆ (DEAD ∪
S(v)) and therefore v′ may be marked DONE (principle 4).

Compared to the VISITED set from Algorithm 1, this algorithm
uses S andRp to derive whether or not a vertexw has been ‘visited’
before (principle 3). Here, ‘visited’ implies that there exists a vertex
w′ on Rp (hence also on the local search path) which is part
of the same supernode as w. Section 4 shows how iteration on
Rp can be avoided. The recursive procedure for w is called for a
successor of v′ that is part of the same supernode as v. Assuming
that ∀a, b ∈ S(v) : a↔ b holds, we have that v → v′ → w and w
is reachable from v.

Correctness sketch. The soundness defined here implies that re-
ported SCCs are strongly connected, whereas completeness implies
that they are maximal. We demonstrate soundness (in Theorem 1)
by showing that vertices added to S(v) are always strongly con-
nected with v (or any other vertex in S(v)). Completeness (see
Theorem 2) follows from the requirements to mark an SCC DEAD
(Lemma 2–4). Complete correctness follows from termination in
Theorem 3.

Lemma 1 (Stack). ∀r ∈ Rp : r →∗ Rp.TOP().

Proof. Follows from Rp being a subset of the program stack.

Theorem 1 (Soundness). If two vertices are in the same set, they
must form a cycle: ∀v, w : w ∈ S(v)⇒ v →∗ w →∗ v.

Proof. Initially the hypothesis holds, since ∀v : S(v) = {v}. As-
suming that the theorem holds for S before the executing a state-
ment of the algorithm, we show it holds after, considering only the
non-trivial case, i.e. Line 14. Before Line 12, we have S(v) =
S(Rp.TOP()) (either v = Rp.TOP() or a recursive procedure has
united v with the current Rp.TOP()). The while-loop (Line 12-
14) continuously pops the top vertex of Rp and unites it with the
new Rp.TOP(). Since ∃w′ ∈ Rp : w ∈ S(w′) (the condition at
Line 10 did not hold), the loop ends iff S(R.TOP()) = S(v) =
S(v′) = S(w) = S(w′). Because v′ → w and w′ →∗ R.TOP()
(Lemma 1), we have that the cycle v′ →∗ w →∗ v′ is merged, thus
preserving the hypothesis in the updated S.

Lemma 2. After UFSCCp(v) terminates, v ∈ DEAD.

Proof. This follows directly from Line 16 and the fact that v is
never removed from S(v).

Lemma 3. Successors of DONE vertices are DEAD or in a supern-
ode on Rp: ∀v ∈ DONE : POST(v) ⊆ (DEAD ∪ (S(v) ∩Rp)).

Proof. The only place where DONE is modified is in Line 15.
Vertices are never removed from DEAD or S(v) for any v. In
Line 8-14, all successors w of v′ are considered separately:
1. w ∈ DEAD is discarded.
2. w is not in a supernode of Rp and UFSCC is recursively in-

voked for w. From Lemma 2, we obtain that w ∈ DEAD upon
return of UFSCCp(w).

3. there is some w′ ∈ Rp s.t. S(w) = S(w′). Supernodes of
vertices on Rp are united until S(v) = S(v′) = S(w).

All three cases thus satisfy the conclusion of the hypothesis before
v′ is added to DONE at Line 15.

Lemma 4. Every vertex in a DEAD partial SCC set is DONE:
∀v ∈ DEAD : ∀v′ ∈ S(v) : v′ ∈ DONE.

Proof. Follows from the while-loop exit condition at Line 7.

Theorem 2 (Completeness). After UFSCCp(v) finishes, every
reachable vertex t (a) is DEAD and (b) S(t) is a maximal SCC.

Proof. (a. every reachable vertex t is DEAD). Since v ∈ DEAD
(Lemma 2), we have ∀v′ ∈ S(v) : v′ ∈ DONE (Lemma 4).
By Lemma 3, we deduce that every successor of v′ is DEAD (as
v′ ∈ S(v) implies v′ ∈ DEAD by Line 16). Therefore, by applying
the above reasoning recursively on the successors of v′ we obtain
that every reachable vertex from v is DEAD.

(b. S(t) is a maximal SCC). Assume by contradiction that for
disjoint DEAD sets S(v) 6= S(w) we have v →∗ w →∗ v. W.l.o.g.,
we can assume v → w. Since S(w) 6= S(v), we deduce that w ∈
DEAD when this edge is encountered (Lemma 3). However, since
w →∗ v we must also have v ∈ DEAD (Theorem 2a), contradicting
our assumption. Hence, every DEAD S(t) is a maximal SCC.

Theorem 3 (Termination). Algorithm 2 terminates for finite graphs.

Proof. The while-loop terminates because vertices can only be
added once to S(v) and due to a strictly increasing DONE in every
iteration. The recursion stops because the vertices part of LIVE
supernodes in Rp only increase: as per Line 6 and Line 14.



4. Implementation
For the implementation of Algorithm 2, we require the following:

- Data structures for Rp, S, DEAD and DONE.
- A mechanism to iterate over v′ ∈ S(v) \ DONE (Line 7).
- Means to check if a vertex v is part of (S(v) ∩Rp) (Line 10).
- An implementation of the UNITE() procedure (Line 14).
- A technique to add vertices to DONE and DEAD (Line 15,16).

We explain how each aspect is implemented. For a detailed version
of the complete algorithm, we refer the readers to Appendix A.
Rp can be implemented with a standard stack structure. S can

be implemented with a variation of the wait-free union-find struc-
ture [2]. Its implementation employs the atomic Compare&Swap
(CAS) instruction (c := CAS(x, a, b) atomically checks x = a, and
if true updates x := b and c := TRUE, else just sets c := FALSE)
to update the parent for a vertex without interfering with opera-
tions from other workers on the structure (FIND() and UNITE()).
We implement this structure in an array, which we index using the
(unique) hashed locations of vertices. In a UNITE(S, a, b) proce-
dure, the new root of S(a) and S(b) is determined by selecting
either the root of S(a) or S(b), whichever has the highest index,
i.e.: essentially random in our setting using hashed locations. This
mechanism for uniting vertices preserves the quasi-constant time
complexity for operations on the union-find structure [23].

The DEAD set is implemented with a status field in the union-
find structure. We have that S(v) is DEAD if the status for the root
of v is DEAD, thus marking an SCC DEAD, indeed implementing
Line 16 of Algorithm 2 atomically. This marking is achieved in
quasi-constant time (a FIND() call with a status update).

Worker set. We show how @w′ ∈ Rp : S(w′) = S(w) (Line 10)
is implemented. In the union-find structure, for each node we keep
track of a bitset of size p. This worker set contains a bit for each
worker and represents which workers are currently exploring a
partial SCC. We say that worker p has visited a vertex w if the
worker set for the root of S(w) has the bit for p set to true. If
otherwise worker p encounters an unvisited successor vertex w, it
sets its worker bit in the root of S(w) using CAS and recursively
calls UFSCC(w) (Line 10). In the UNITE(S, a, b) procedure, after
updating the root, the worker sets for a and b are combined (with a
logical OR, implemented with CAS) and stored on the new root to
preserve that a worker bit is never removed from a set. The process
is repeated if the root is updated while updating the worker set.
Since only worker p can set worker bit p (aside from combining
worker sets in the UNITE() procedure), only partial SCCs visited
by worker p (on Rp) can and will contain the worker bit for p.

As an example to explain the worker set, consider Figure 2.
Here, worker B has found the cycle a → b → c → d → a,
which are all united: S(b) = {a, b, c, d}, and worker R explored

a b c

d

e f

b

a c d

e

f

{r,b} {b} {b} {r}

{r,b} {r}

Figure 2: Illustration of the worker set in practice. The left side
depicts the graph, the union-find structure with the worker set is
shown right for workers R and B.

a → e → f → e (with S(f) = {e, f}). Worker R now considers
the edge f → c and wants to know if it has previously visited a
vertex in S(c) (which would imply a cycle). Because the worker set
is managed at the root of S(c) (which is node b), worker R simply
has to check there if its worker bit is set. Since this is the case, the
sets S(f) and S(e) can be united.

Cyclic linked list. The most challenging aspect of the imple-
mentation is to keep track of the DONE vertices and iterate over
S(v) \ DONE. We do this by making the union-find iterable by
adding a separate cyclic list implementation. That is, we extend the
structure with a next pointer and a list status flag that indicates if
a vertex is either BUSY or DONE (initially, the flag is set to BUSY).

The idea is that the cyclic list contains all BUSY vertices. Ver-
tices marked DONE are skipped for iteration, yet not physically re-
moved from the cycle. Rather, they will be lazily removed once
reached from their predecessor on the cycle (this avoids maintain-
ing doubly linked lists). All DONE vertices maintain a sequence of
next pointers towards the cyclic list, to ensure that the cycle of
BUSY vertices is reachable from every vertex v′ ∈ S(v). If all ver-
tices from S(v) are marked DONE, the cycle becomes empty (we
end up with a DONE vertex directing to itself) and S(v) can be
marked DEAD.

To illustrate the cyclic list structure, consider the example from
Figure 3. In the partial SCC {a, b, c, d}, vertices a and c are marked
DONE (gray), and vertices b and d are BUSY (white). We fur-
ther assume that {e} is a DEAD SCC. The vertices a and c are
marked DONE since their successors are in (DEAD ∪ S(a)) (see
also Lemma 3). Note that b and d (and f ) may not yet be marked
DONE because their successors have not been fully explored yet.
The right side depicts a possible representation for the cyclic list
structure (where the arrows are next pointers).

In the algorithm, Line 7 can be implemented by recursively
traversing v.next to eventually encounter either a vertex v′ ∈
S(v) \ DONE or otherwise it detects that there is no such vertex and
the while-loop ends. Line 15 is implemented by setting the status
for v′ to DONE in the union-find structure, which is lazily removed
from the cyclic list.

The UNITE(S, a, b) procedure is extended to combine two
cyclic lists into one (without losing any vertices). We show this
procedure using the example from Figure 4. Here UNITE(S, a, f)
is called (b becomes the new root of the partial SCC). The next
pointers (solid arrows) for a and f are swapped with each other
(note that this can not be done atomically), which creates one list
containing all vertices. It is important that both a and f are BUSY
vertices (as otherwise part of the cycle may be lost), which is en-
sured by first searching and using light-weight, fine-grained locks
(one per node) on BUSY vertices a′ and f ′. The locks also protect
the non-atomic pointer swap.

a b

c d

e

f

?

?

?

b

a

c

d

e

f

Figure 3: Illustration of the cyclic list in practice. The left side
depicts the graph, the right side depicts the corresponding cyclic
list structure. White nodes are BUSY and gray nodes are DONE.
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Figure 4: Cyclic list before (a) and after (b) a UNITE(S, a, f) call.
Dashed edges depict parent pointers and solid edges next pointers.
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Figure 5: Cyclic list before (a) and after (b) a list ‘removal’. Solid
edges depict next pointers and gray nodes are DONE.

Removing a vertex from the cyclic list is a two-step process.
First, the status for the vertex is set to DONE. Then, during a
search for BUSY vertices, if two subsequent DONE vertices are
encountered, the next pointer for the first one is updated (Figure 5).
Note that the ‘removed’ vertex remains pointing to the cyclic list.

We use a lock on the union-find structure (only on the root for
which the parent gets updated) and a lock on list nodes encoded as
status flags. The structure for union-find nodes is shown in Figure 6.
We chose to use fine-grained locking instead of wait-free solution,
for two reasons: we do not require the stronger guarantees of the
latter, and the pointer indirection needed for a wait-free design
would decrease performance compared to the current node layout
with its memory locality (as we learned from our previous work).

pointer parent . . . [union-find parent]
pointer next . . . . [list next pointer]
bit[p] worker set . . . . . . [worker set]
bit[2] uf status [∈ {LIVE, LOCK, DEAD}]
bit[2] list status [∈ {BUSY, LOCK, DONE}]

Figure 6: The node record of the iterable union-find data structure.

Runtime/work tradeoff. Our treatment of the complexity here is
not as formal as in e.g. [55], and relies on practical assumptions.
We argue that, while the theoretical complexity study of parallel
algorithms offers invaluable insights, it is also remote from the
practical solution that we focus on. E.g. we can not within the
foreseeable future obtain n parallel processors for n-sized graphs.

We assume that overhead from synchronization and successor
randomization is bound by a constant factor. Because the worker
sets need to be updated, UNITE operations take O(p) time and
work (instructions). Assuming again that p is small enough for
the worker set to be stored in one or few words (e.g. 64), UNITE
becomes quasi constant (now the FIND operation it calls domi-
nates). Finding a BUSY vertex in the cyclic list is bounded by
O(n) (the maximal sequence of DONE vertices before reaching a
BUSY vertex). However, we suspect that due to the lazy removal
of DONE nodes, similar to path-compression [54], supernode iter-
ation is amortized quasi constant under the condition that p � n.
Though if this not the case, we could always use a more compli-
cated doubly linked list instead [59, p. 63]. So amortized, all su-
pernode operations are bounded by O(α) time and work. I.e. the
inverse Ackermann function representing quasi constant time.

Since every worker may visit every edge and vertex, performing
a constant number of supernode operations on the vertex, the worst-

case work complexity for the algorithm is bounded byO(α·p·(n+
m)). As typically, the inverse Ackermann function is bounded by a
constant, we obtainO(p ·(n+m)). The runtime, however, remains
bounded byO(m+ n) (ignoring the quasi factor), as useless work
is done in parallel. The best-case runtimes from Table 1,O(n+m

p
),

follow when assuming that almost every vertex is processed by only
one worker.1

Memory usage. The memory usage of Algorithm 2, using the
implementation discussed in the current section, comprises two
aspects. First, each worker has a local stack Rp, which contains at
most n items (e.g. vertices on a path or within the same SCC when
drawn from the iterable union-find structure). Second, the global
union-find contains: a parent pointer, a worker set, a next pointer,
and status fields for both union-find and its internal list (Figure 6).
Assume that vertices and pointers in the structure can be stored
in constant amount of space, their storage requires 3 units. Also
assuming again that p � n, the worker set takes another unit, e.g.
one 64-bit machine word for p = 64. Then, the algorithm uses at
most (p · n) + 4n units (stacks plus shared data structures).

The worst-case space complexity becomes O(p · n) (also when
p is not constant, e.g. approaching n, and the worker set can-
not be stored in a constant anymore). The local replication on the
stacks is the main cause of the worst-case memory usage of PRDFS
algorithms as shown in Table 1 (other PRDFS algorithms, such
as [18, 19, 32, 46], do not require a worker set). In practice how-
ever, the replication is proportional to the contention occurring on
vertices which is arguably low when the algorithm processes large
graphs and p � n. Hence the actual memory usage will be closer
to the best-case complexity that occurs when stacks do not over-
lap, i.e.: O(n) (unless, again, p is not constant and the worker set
dominates memory usage). Section 6.1 confirms this.

5. Related Work

Parallel on-the-fly algorithms. Renault et al. [46] were the first
to present a PRDFS algorithm that spawns multiple instances of
Tarjan’s algorithm and communicates completely explored SCCs
via a shared union-find structure. We improve on this work by
communicating partially found SCCs. Lowe [36] runs multiple
synchronized instances of Tarjan’s algorithm, without overlapping
stacks. Instead a worker is suspended if it meets another’s stack
and stacks are merged if necessary. While in the worst case this
might lead to a quadratic time complexity, Lowe’s experiments
show decent speedups on model checking inputs, though not for
large SCCs.

Fix-point based algorithms. Section 1 discussed several fix-point
based solutions. A notable improvement to FB [20] is the trimming
procedure [39], which removes trivial SCC without fix-point recur-
sion. OBF [4] further improves this by subdividing the graph in
a number of independent sub-graphs. The Coloring algorithm [42]
propagates priorized colors dividing the graph in disconnected sub-
graphs whose backwards slices identify SCCs. Barnat et al. [6] pro-
vide CUDA implementations for FB, OBF, and Coloring. Copper-
smith et al. [13] present and prove an O(m · logn) serial runtime
version of FB, Schudy [48] further extended this to obtain an ex-
pected runtime bounded by O(log2 n) reachability queries.

Hong et al. [25] improved FB for practical instances, by also
trimming SCCs of size 2. After the first SCC is found (which is
assumed to be large in size), the remaining components are detected

1 We acknowledge that for fair comparison with Table 1, the impact of the
worker set (a factor p) cannot be neglected, e.g. for large p approaching n,
yieldingO(p ·max(α, p) · (n+m)) work andO(max(α, p) · (n+m))
runtime.



(with Coloring) and decomposed with FB. Slota et al. [49] propose
orthogonal optimization heuristics and combine them with Hong’s
work. Both Hong’s and Slota’s algorithm operate in quadratic time.

Parallel DFS. Parallel DFS is remotely related. It has long been
researched intensively, though there are two types of works [21]:
one discussing parallelizing DFS-like searches (often using terms
like ‘backtracking’, load balancing and stack splitting), and theo-
retical parallelization of lexicographical (strict) DFS, e.g. [1, 55].
Recent work from Träff [56] proposes a strategy to processes in-
coming edges, allowing them to be handled in parallel. The result-
ing complexity is O(m

p
+ n), providing speedup for dense graphs.

Research into the characterization of search orders provides other
new venues to analyze these algorithms [7, 15]

Union-find. The investigation of Van Leeuwen and Tarjan settled
the question which of many union-find implementations were su-
perior [54]. Goel er al. [23] however later showed that a simpler
randomized implementation can also be superior. A wait-free con-
current union-find structure was introduced in [2]. Other versions
that support deletion [29]. To the best of our knowledge, we are the
first to combine both iteration and removal in the union-find struc-
ture. This allows the disjoint sets to be processed as a cyclic queue,
which enables concurrent iteration, removal and merging.

6. Experiments
The current section presents an experimental evaluation of UFSCC.
Results are evaluated compared to Tarjan’s sequential algorithm,
another on-the-fly PRDFS algorithm using model checking inputs,
synthetic graphs and an offline, fix-point algorithm.

Experimental setup. All experiments were performed on a ma-
chine with 4 AMD OpteronTM 6376 processors, each with 16
cores, forming a total of 64 cores. There is a total of 512GB mem-
ory available. We performed every experiment at least 50 times and
calculated their means and 95% confidence intervals.

We implemented UFSCC in the LTSMIN model checker [28],2

which we use for decomposing SCCs on implicitly given graphs.
LTSMIN’s POST() implementation applies measures to permute the
order of a vertex’s successors so that each worker visits the succes-
sors in a different order. We compare against a sequential version
of Tarjan’s algorithm and the PRDFS algorithm from Renault et
al. [46] (see Section 5), which we refer to as Renault. Both are
also implemented in LTSMIN to enable a fair comparison. Unfor-
tunately, we were unable to implement Lowe’s algorithm [36], nor
successful to use its implementation for on-the-fly exploration.

For a direct comparison to offline algorithms, we also imple-
mented UFSCC in the SCC environment provided by Hong et
al. [25]. This implementation is compared against benchmarks of
Tarjan and Hong’s concurrent algorithm (both provided by Hong et
al.). While Slota et al. [49] improve upon Hong’s algorithm, we did
not have access to an implementation. However, considering the
fact that both are quadratic in the worst case, we can expect similar
performance pitfalls as Hong’s algorithm for some inputs.

We chose this more tedious approach because the results from
on-the-fly experiments are hard to compare directly against off-
line implementations. Offline implementations benefit from having
an explicit graph representation and can directly index based on
the vertex numbering, whereas on-the-fly implementations both
generate successor vertices, involving computation, and need to
hash the vertices. This results in a factor of±25 vertices processed
per second for the same graphs using the sequential version of the
algorithms: Too much for a meaningful comparison of speedups.

2 All our implementations, benchmarks, and results are available via
https://github.com/utwente-fmt/ppopp16.

Table 2: Graph characteristics for model checking, synthetic and
explicit graphs. Here, M denotes millions and columns respectively
denote the number of vertices, transitions and SCCs, the maximal
SCC size and an approximation of the diameter.

graph # vertices # trans # sccs max scc diameter

leader-filters.7 26.3M 91.7M 26.3M 1 71
bakery.6 11.8M 40.4M 2.6M 8.6M 176
cambridge.6 3.4M 9.5M 8,413 3.3M 418
lup.3 1.9M 3.6M 1 1.9M 134
resistance.1 13.8M 32.1M 3 13.8M 60,391
sorter.3 1.3M 2.7M 1.2M 278 300

L1751L1751T1 9.2M 24.5M 3 3.1M 3501
L351L351T4 3.8M 11.3M 31 123,201 704
L5L5T16 3.3M 9.8M 131,071 25 24
Li10Lo200 4.0M 15.2M 100 40,000 416
Li50Lo40 4.0M 15.8M 2,500 1,600 176
Li200Lo10 4.0M 16.0M 40,000 100 416

livej 4.8M 69.0M 971,232 3.8M 19
patent 3.8M 16.5M 3.8M 1 24
pokec 1.6M 30.6M 325,893 1.3M 14
random 10.0M 100.0M 877 10.0M 11
rmat 10.0M 100.0M 2.2M 7.8M 9
ssca2 1.0M 157.9M 31 1.0M 133
wiki-links 5.7M 130.2M 2.0M 3.7M 284

Table 2 summarizes graph sizes from respectively: a selection of
graphs from an established benchmark set for the model checker,
synthetic graphs generated in the model checker, and explicitly
stated graphs consisting of real-world and generated graphs. We
also exported both model checking and synthetic graphs to Hong’s
framework, to use as inputs for the offline algorithms.

We validated the implementation by means of proving the algo-
rithm and thoroughly examining that all invariants are preserved in
each implemented sub-procedure. Moreover, obtained information
from a graph search and the encountered SCCs were reported and
compared with the results from Tarjan’s algorithm.

Experiments on model checking graphs. We use model checking
problems from the BEEM database [43], which consists of a set
of benchmarks that closely resemble real problems in verification.
From this suite, we select all inputs (62 in total) large enough for
parallelization (with search spaces of at least 106 vertices), and
small enough to complete within a timeout of 100 seconds using
our sequential Tarjan implementation. Though our implementation
in reality generates the search space during exploration (on-the-fly),
we refer to it simply as ‘the graph’.

Figure 7 (left) compares the runtimes for UFSCC on 64 work-
ers against Tarjan’s sequential algorithm in a speedup graph. The
x-axis represents the total time used for Tarjan’s algorithm and the
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Figure 7: Comparison of time and speedup for 62 model checking
graphs for concurrent UFSCC against Tarjan (left) and concurrent
Renault (right), where UFSCC and Renault use 64 workers. The
red crosses represent the selected BEEM graphs in Figure 8.
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Table 3: Comparison of sequential on-the-fly Tarjan with concur-
rent UFSCC and Renault on 64 cores for a set of model checking
inputs and synthetic graphs.

execution time (s) UFSCC speedup vs
graph Tarjan Renault UFSCC Tarjan Renault

leader filters.7 68.602 1.995 1.933 35.494 1.032
bakery.6 40.747 68.526 1.464 27.825 46.795
cambridge.6 15.162 19.965 0.716 21.176 27.884
lup.3 5.645 7.941 0.473 11.944 16.803
resistance.1 39.425 58.247 6.258 6.300 9.307
sorter.3 2.808 0.618 0.687 4.088 0.900

L1751L1751T1 28.994 36.088 2.526 11.478 14.287
L351L351T4 12.189 4.793 0.928 13.138 5.166
L5L5T16 8.095 1.255 0.782 10.357 1.606
Li10Lo200 15.144 5.127 1.399 10.828 3.666
Li50Lo40 13.473 3.973 1.892 7.122 2.100
Li200Lo10 12.906 4.438 2.874 4.491 1.544

y-axis represents the observed speedup for the UFSCC algorithm
on the same graph instances. We observe that in most cases UFSCC
performs at least 10× faster than Tarjan. The performance improve-
ments for all model checking graphs range from 4.1 (sorter.3) to
35.5× faster (leader filters.7) and the geometric mean per-
formance increase for UFSCC over Tarjan is 14.84. Compared to
the sequential runtime of UFSCC, its multi-core version exhibits a
geometric mean speedup of 19.53. We also witness a strong trend
towards increasing speedups for larger graphs (dots to the right rep-
resent longer runtimes in Tarjan, which is proportional to the size
of the search space).

Figure 7 (right) compares UFSCC with Renault on model
checking graphs, both using 64 workers. For a number of graphs
Renault performs slightly better (up to 1.2× faster than UFSCC).
These graphs all contain many small SCCs and thus communicat-
ing completed SCCs is effective. Since UFSCC applies a similar
communication procedure while also maintaining the cyclic list
structure, a slight performance decrease is to be expected. For most
other graphs however we see that UFSCC significantly outperforms
Renault. These graphs indeed contain large SCCs. In some cases
Renault even performs worse than Tarjan’s sequential algorithm,
which we attribute to contention on the union-find structure (where
multiple workers operate on a large SCC at the same time, thus
all requiring the root of that SCC). On average, we observe again
that UFSCC scales better for larger graphs. The geometric mean
performance increase for UFSCC over Renault (considering every
examined model checking graph) is 6.42.

We select 6 graphs to examine more closely. We choose the
graphs to range from the best and worst results when UFSCC is
compared to Tarjan and Renault. We indicated the selected graphs
with red squares in Figure 7. Information about these graphs is
provided in Table 2 (the first 6 graphs).

The scalability for UFSCC and Renault compared to Tarjan is
depicted in Figure 8 and Table 3 quantifies the performance results
for 64 workers. In Figure 8, while we generally see a fairly linear
performance increase, we notice two peculiarities when the number
of workers is increased for UFSCC. First, in some graphs the per-
formance increase levels out (or even drops a bit) for a certain num-
ber of workers and thereafter continues in increasing performance
(bakery.6, cambridge.6, lup.3). These results occur from high
variances in the performance results, e.g. where UFSCC executes
in 1 second for 75% of the cases and in 4 seconds for the other
25%. Informal experiments suggest that these results origin from
the combination of an unfortunate successor permutation and the
specific graph layout.

Another peculiarity is that for most graphs the performance does
not increase as much for 32 workers or more (and even drops for
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Figure 8: Scalability for the on-the-fly UFSCC and Renault imple-
mentations relative to Tarjan’s algorithm on a set of model checking
inputs.

sorter.3). We determined that this effect likely results from a
high contention on the internal union-find structure; where a large
number of workers try to access the same memory locations (the
same reason for why Renault with 64 workers performs worse
compared to Tarjan for graphs with large SCCs). In a previous
design of UFSCC, which used a more drastic locking scheme, this
effect was observed to be more prevalent [8].

For each model checking graph, we compared the total number
of visited vertices for UFSCC using 64 workers with the number
of unique vertices. We observe that 0.5% (leader filters.7) up
to 128% (resistance.1) re-explorations occurred in the experi-
ments. With re-exploration we mean the number of times that ver-
tices are explored by more than one worker, which ideally should
be minimized. As a geometric mean (over the averaged relative re-
exploration for each graph), the total number of explored vertices is
21.1% more than the number of unique vertices, implying that on
average each worker only visits 121.1

64
≈ 1.9% of the total number

of vertices.

Experiments on synthetic graphs. We experimented on synthet-
ically generated graphs (equivalent to the ones used by Barnat et
al. [4]) to find out how particular aspects of a graph influence
UFSCC’s scalability. The first type of graph, called LxLxTy, is the
Cartesian product for two cycles of x vertices with a binary tree of
depth y (generated by taking the parallel composition of processes
with said control flow graphs: Loop(x)‖Loop(x)‖Tree(y)). This
graph has 2y+1 − 1 components of size x2.
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Figure 9: Scalability for selected synthetic graphs of UFSCC and
Renault relative to Tarjan’s algorithm.

The second type is called LixLoy and is a parallel composi-
tion of two sequences of x vertices with two cycles of y vertices
(Line(x)‖Line(x)‖Loop(y)‖Loop(y)). This graph has x2 com-
ponents of size y2. Table 2 summarizes these graphs. We provide
a comparison of Tarjan, Renault and UFSCC in Table 3 and show
how UFSCC and Renault scale compares to Tarjan in Figure 9.

In Figure 9, we notice that scalability of UFSCC is more con-
sistent than the results in Figure 8. This likely follows from the
even distribution of successors and SCCs in these graphs. While
UFSCC’s speedup compared to both Tarjan and Renault are not as
impressive as we see in the model checking experiments, it still
outperforms Tarjan and Renault significantly (though less impres-
sively for L5L5T16 and Li200Lo10, which both consist of many
small SCCs). Additional experiments on inputs with increased out-
degree (generated by putting more processes in parallel), showed
that speedups indeed improved.

Experiments on explicit graphs. We experimented with an offline
implementation of UFSCC and compare its results with (an offline
implementation of) Tarjan’s and Hong’s algorithm. The explicit
graphs are stored in a CSR adjacency matrix format (c.f. [25]). We
benchmarked several real-world and generated graph instances. In-
formation about these examined graphs can be found in Table 2
(the bottom seven graphs). The livej, patent and pokec graphs
were obtained from the SNAP [35] database and represent the Live-
Journal social network [3], the citation among US patents [34], and
the Pokec social network [51]. The graph wiki-links3 represents
Wikipedia’s page-to-page links. The random, rmat and ssca2

3 Obtained from http://haselgrove.id.au/wikipedia.htm.
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Figure 10: Scalability for the offline UFSCC and Hong implemen-
tations relative to Tarjan’s algorithm on a set of explicit graphs.

graphs represent random graphs with real-world characteristics
and were generated from the GTGraph [38] suite using default
parameters. We also constructed explicit graphs from the selected
on-the-fly model checking and synthetic experiments (by storing
all edges during an on-the-fly search in CSR format), these graphs
are prefixed with “e-” in Table 4. We used the GreenMarl [24]
framework to convert the graphs to a binary format suitable for the
implementation.

The results of these experiments can be found in Table 4. We
provide the speedup graphs for six of these graphs in Figure 10.
Again, we stress that the results from Table 3 and Table 4 cannot
be compared, since the on-the-fly experiments perform more work
due to the dynamic generation of successors. We notice some inter-
esting results from the offline experiments, which we summarize as
follows:

- On model checking graphs, UFSCC generally performs best
(with two exceptions) and Hong performs slower than Tarjan
for 4 of the 6 graphs.

- On synthetic graphs, UFSCC struggles to gain performance
over Tarjan but remains to perform similarly, while Hong sig-
nificantly performs worse (and always crashed on L5L5T16).

- On real-world graphs, UFSCC shows increased performance
compared to Tarjan, but Hong clearly outperforms UFSCC.

The synthetic graphs seem to exhibit instances of Hong’s quadratic
worst-case performance. We also examined that the performance
for UFSCC with 1 worker is significantly worse compared to that
of Hong (up to a factor of 4), indicating that the overhead for
the iterable union-find structure affects the performance on offline
graphs.

http://haselgrove.id.au/wikipedia.htm


Table 4: Comparison of sequential offline Tarjan with concurrent
UFSCC and Hong on 64 cores for a set of model checking inputs,
synthetic graphs and real-world graphs (all explicitly represented
in CSR adjacency matrix format).

execution time (s) UFSCC speedup vs
graph Tarjan Hong UFSCC Tarjan Hong

e-leader filters.7 2.771 1.532 0.635 4.361 2.411
e-lup.3 0.418 0.100 0.167 2.505 0.597
e-bakery.6 1.733 5.110 0.760 2.280 6.725
e-cambridge.6 0.277 0.330 0.188 1.475 1.752
e-sorter.3 0.091 3.710 0.068 1.342 54.419
e-resistance.1 2.040 5.974 3.065 0.666 1.949

e-L1751L1751T1 0.878 139.636 1.086 0.809 128.631
e-L351L351T4 0.247 30.216 0.290 0.854 104.239
e-L5L5T16 0.201 - 0.104 1.936 -
e-Li10Lo200 0.251 30.627 0.362 0.692 84.548
e-Li50Lo40 0.221 22.452 0.227 0.975 98.925
e-Li200Lo10 0.223 39.934 0.332 0.671 120.170

livej 2.963 0.278 0.809 3.664 0.344
patent 0.914 0.060 0.288 3.174 0.208
pokec 1.372 0.113 0.338 4.061 0.333
random 10.081 0.573 1.650 6.110 0.347
rmat 8.327 0.498 1.577 5.279 0.315
ssca2 1.657 0.208 0.356 4.651 0.583
wiki-links 4.237 0.352 1.017 4.168 0.347

6.1 Memory usage
The memory usage is dominated by the shared union-find structure
with linked list and worker set. Its implementation comprises an
array of nodes. Each node contains two 64-bit pointers, a bit set of
width 64 functioning as the worker set and several flag fields (see
Figure 6). For alignment, 64 bits are reserved for the flags, resulting
in a total node size of 4 × 8 = 32 bytes. Storing a vertex requires
an 8-byte entry in a shared hash table and one union-find node.
Therefore, our implementation requires at least 40 bytes per vertex.

The only additional memory usage comes from the local stacks,
all of which could in the worst case contain all vertices, as ex-
plained in Section 4. One stack entry takes 8 bytes. To investi-
gate this worst-case behavior, we plotted the total memory usage
per vertex of UFSCC on 64 cores against the percentage of re-
explorations for all of the above models in Figure 11. The fig-
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Figure 11: Memory usage in bytes per vertex of UFSCC on 64 cores
for all graphs: (on-the-fly) model checking inputs (+) / synthetic
graphs (×) and the different types of explicit graphs (?).

ure shows that is no positive correlation between memory usage
and re-explorations, confirming our expectation that stack sizes and
re-explorations are independent quantities. The memory usage for
most inputs is close to the minimum of 40 bytes, with a median of
40.154 bytes. This demonstrates that the worst-case ofO(p×n) is
far from typical, i.e.: actual memory usage is linear in the number
of vertices. The two graphs which resulted in the highest memory
usage are both tagged in the figure.

The presence of a large hash table forced us to overestimate the
stack sizes using local counters measuring their maximum sizes (a
shared total counter would compromise scalability [31, Sec. 1.6.1]).
Therefore, in reality the memory use could even be much lower .

7. Conclusions
We presented a new quasi-linear multi-core on-the-fly SCC algo-
rithm. The algorithm communicates partial SCCs using a new it-
erable union-find structure. Its internal cyclic linked list allows
for concurrent iteration and removal of nodes – enabling multiple
workers to aid each other in decomposing an SCC. Experiments
demonstrated a significant speedup (for 64 workers) over the cur-
rent best known approaches, on a variety of graph instances. Unlike
previous work, we retain scalability on graphs containing a large
SCC. In future work, we will attempt to reduce the synchroniza-
tion overhead, and focus on applications of parallel SCC decom-
position. We also want to investigate the iterable union-find data
structure separately and derive its exact amortized complexity.
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model checking based on negative cycle detection. In FST TCS 2001:
Foundations of Software Technology and Theoretical Computer Science
(pp. 96-107). Springer Berlin Heidelberg.
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A. The Complete UFSCC Algorithm
The current appendix presents the full version of the UFSCC algo-
rithm and the iterable union-find data structure it relies on. We do
not provide detailed correctness arguments here (cf. [8]).

Algorithm 3 presents the UFSCC algorithm using the interface
of the union-find structure: for iteration it calls PICKFROMLIST,
and MAKECLAIM reports the successor status (NEW, FOUND, or
DEAD). The exact interface definition of the union-find structure
follows the conditions that can be found in Algorithm 2 (red lines).
E.g., REMOVEFROMLIST marks a vertex DONE. MAKECLAIM
adds the worker to the worker set of the supernode (with an atomic
bitwise OR on a bitvector). PICKFROMLIST, however, combines
iteration with adding SCCs to DEAD (Line 16 in Algorithm 2): It
either returns NULL (marking the SCC DEAD instantly), or a vertex
v′ ∈ S(v) \ DONE (though another worker may have marked v′

DONE just before returning v′, which we allow).
Algorithm 4 shows the implementation of the different union-

find operations for creating, finding and uniting disjoint sets. The
former two remain similar to typical union-find implementations
and require no locking, allowing for high concurrency. That syn-
chronization is not required, is a consequence of the particular re-
quirements from the UFSCC algorithm, which guarantees us, that
UNITE and PICKFROMLIST (marking supernodes dead) globally
always occur after the last FIND on the supernode since at that point
all its edges have been processed. The UNITE procedure
(1) selects a new root (Line 42),
(2) locks the other root vertices on both cycles (Line 44-46),
(3) swaps the list next pointers to create one large cycle (Line 49),
(4) updates the parent for the ‘non-root’ (Line 50),
(5) updates the worker set (Line 51-54), and
(6) finally releases the locks (Line 55-57).
This order of execution is crucial to maintain correctness as even
interchanging steps (4) and (5) could lead to erroneous results. By
only locking the smaller SCC, we allow concurrent updates to the
larger SCC, which helped significantly to improve the performance.

Algorithm 5 provides the cyclic list implementation that allows
UFSCC to treat disjoint sets as queues, while they are being merged
and searched. PICKFROMLIST traverses over DONE vertices until
a BUSY one is found at Line 3-4. At Line 13, the procedure waits
(for UNITE) until locked vertices become BUSY or DONE. The list
contracts vertices at Line 15 for two subsequent DONE vertices
(see also Figure 5), which resembles path halving [54]. No syn-
chronization is further required as path-halving is only performed
on DONE vertices (whereas UNITE only merges BUSY list nodes).
REMOVEFROMLIST only needs to mark the vertex DONE and it
will be taken care of by the path halving later.

Algorithm 3 The implementation UFSCC algorithm
1: ∀p ∈ [1 . . . p] : Rp := ∅ . . . . . . . . . . . . . . . . . . . . . [local stack for each worker]
2: procedure UFSCC MAIN(v0, p)
3: for each p ∈ [1 . . . p] do
4: MAKECLAIM(v0, p) . . . . . . . . . . . . . . . . . . . . . . . [Set worker IDs for v0]
5: UFSCC1(v0) ‖ . . . ‖ UFSCCp(v0) . . . . . . . . . . . . . . . . . . . [run in parallel]
6: procedure UFSCCp(v)
7: Rp.PUSH(v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [start ‘new’ SCC]
8: while v′ := PICKFROMLIST(v) do
9: for each w ∈ RANDOM(POST(v′)) do

10: claim := MAKECLAIM(w, p)
11: if claim = CLAIM NEW then
12: UFSCCp(w) . . . . . . . . . . . . . . . . . . . . . . . . [recursively explore w]
13: else if claim = CLAIM FOUND then
14: while ¬SAMESET(v, w) do
15: r := Rp.POP()
16: UNITE(r, Rp.TOP())
17: REMOVEFROMLIST(v′) . . . . . . . . . . . . . . . . . . [fully explored POST(v′)]
18: if v = Rp.TOP() then Rp.POP() . . . . . . . . . . . . . [remove completed SCC]

Algorithm 4 The concurrent, iterable union-find data structure
1: ∀v ∈ V : . . . . . . . . . . . . . . . . . . . . [Shared union-find structure implementing S]
2: UF[v].parent := v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [union-find parent]
3: UF[v].workers := ∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [worker set]
4: UF[v].next := v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [list next pointer]
5: UF[v].uf status := LIVE . . . . . . . . . . . . . . . . . . [∈ {LIVE, LOCK, DEAD}]
6: UF[v].list status := BUSY . . . . . . . . . . . . . . . [∈ {BUSY, LOCK, DONE}]
7: procedure MAKECLAIM(a, p)
8: aRoot := FIND(a)
9: if UF[aRoot].uf status = DEAD then

10: return CLAIM DEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [empty list]
11: if p ∈ UF[aRoot].workers then
12: return CLAIM FOUND . . . . . . . . . . . . . . . . . . . . [SCC contains worker ID]
13: while p 6∈ UF[aRoot].workers do . . . . . . . . . . . . . . . . . . . . . [add worker ID]
14: UF[aRoot].workers := UF[aRoot].workers ∪ {p}
15: aRoot := FIND(aRoot) . . . . . . . . . . . . . . . [ensure that worker is added]
16: return CLAIM NEW

17: procedure FIND(a)
18: if UF[a].parent 6= a then
19: UF[a].parent := FIND(UF[a].parent)
20: return UF[a].parent

21: procedure SAMESET(a, b)
22: aRoot := FIND(a)
23: bRoot := FIND(b)
24: if aRoot = bRoot then return TRUE
25: if UF[aRoot].parent = aRoot then return FALSE
26: return SAMESET(aRoot, bRoot)

27: procedure LOCKROOT(a)
28: if CAS(UF[a].uf status, LIVE, LOCK) then
29: if UF[a].parent = a then return TRUE
30: UNLOCKROOT(a)
31: return FALSE

32: procedure LOCKLIST(a)
33: aList := PICKFROMLIST(a)
34: if aList = NULL then return NULL . . . . . . . . . . . . . . . . . . . . . . [DEAD SCC]
35: if CAS(UF[aList].list status, BUSY, LOCK) then
36: return aList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [successfully locked list]
37: return LOCKLIST(UF[aList].next) [aList is locked by another worker]
38: procedure UNITE(a, b)
39: aRoot := FIND(a)
40: bRoot := FIND(b)
41: if aRoot = bRoot then return . . . . . . . . . . . . . . . . . . . . . . . . [already united]
42: r := MAX(aRoot, bRoot) . . . . . . . . . . . . . . . . . . [Largest index is new root]
43: q := MIN(aRoot, bRoot)
44: if ¬LOCKROOT(q) then return UNITE(aRoot, bRoot)
45: aList := LOCKLIST(a)
46: bList := LOCKLIST(b)
47: if aList = NULL ∨ bList = NULL then
48: return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [DEAD SCC ⇒ already united]
49: SWAP(UF[aList].next, UF[bList].next) . . . . . . . . . . . . . . . . . [non-atomic]
50: UF[q].parent := r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [update parent]
51: do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [update worker set]
52: r := FIND(r)
53: UF[r].workers := UF[r].workers ∪ UF[q].workers
54: while UF[r].parent 6= r . . . . . . . . . . . . . . . . [ensure that we update the root]
55: UF[aList].list status := BUSY . . . . . . . . . . . . . . . [unlock list on aList]
56: UF[bList].list status := BUSY . . . . . . . . . . . . . . . [unlock list on bList]
57: UF[q].uf status := LIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [unlock q]

Algorithm 5 The list part of the iterable union-find
1: procedure PICKFROMLIST(a)
2: do
3: if UF[a].list status = BUSY then return a
4: while UF[a].list status = LOCK . . . . . . . . . . . . . . [exit if status = DONE]
5: b := UF[a].next
6: if a = b then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Cycle becomes empty]
7: aRoot := FIND(a)
8: if CAS(UF[aRoot].uf status, LIVE, DEAD) then
9: report SCC aRoot

10: return NULL . . . . . . . . . . . . . . . . . . . . . . . . [empty cycle ⇒ finished SCC]
11: do
12: if UF[b].list status = BUSY then return b
13: while UF[b].list status = LOCK . . . . . . . . . . . . . . [exit if status = DONE]
14: c := UF[b].next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [a → b → c]
15: UF[a].next := c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [a and b are DONE]
16: return PICKFROMLIST(c)

17: procedure REMOVEFROMLIST(a)
18: while UF[a].list status 6= DONE do
19: CAS(UF[a].list status, BUSY, DONE) . [only remove BUSY nodes]
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