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Abstract. In recent years, the LTSmin model checker has been extended
with support for several new modelling languages, including probabilis-
tic (Mapa) and timed systems (Uppaal). Also, connecting additional
language front-ends or ad-hoc state-space generators to LTSmin was sim-
plified using custom C-code. From symbolic and distributed reachability
analysis and minimisation, LTSmin’s functionality has developed into a
model checker with multi-core algorithms for on-the-fly LTL checking with
partial-order reduction, and multi-core symbolic checking for the modal
µ-calculus, based on the multi-core decision diagram package Sylvan.
In LTSmin, the modelling languages and the model checking algorithms
are connected through a Partitioned Next-State Interface (Pins), that
allows to abstract away from language details in the implementation of
the analysis algorithms and on-the-fly optimisations. In the current paper,
we present an overview of the toolset and its recent changes, and we
demonstrate its performance and versatility in two case studies.

1 Introduction

The LTSmin model checker has a modular architecture which allows a number
of modelling language front-ends to be connected to various analysis algorithms,
through a common interface. It provides both symbolic and explicit-state anal-
ysis algorithms for many different languages, enabling multiple ways to attack
verification problems. This connecting interface is called Partitioned Next-State
Interface (Pins), the basis of which consists of a state-vector definition, an initial
state, a partitioned successor function (NextState), and labelling functions.
Pins defines an implicit state space, abstracting away from modelling language
details.

The main difference with other language interfaces, such as the Open/Cæsar
interface [21] of CADP [22] and the CESMI interface of DiVinE [3], is the
structure that Pins exposes by exporting dependencies between the partitioned
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Fig. 1: LTSmin’s Pins architecture.

successor function and the variables in the state vector in the form of dependency
matrices. Our approach is also dissimilar from NuSMV’s [9], where the transi-
tion relation is specified directly, imposing restrictions on the language. In the
past, we have shown that these dependencies enable symbolic reachability using
BDDs/MDDs with multiple orders of magnitude performance improvement [7, 8]
as well as (explicit-state) distributed reachability with state compression [6].

Recently, we extended Pins with separate read and write dependency matri-
ces, special state labels for guards, and guard/transition dependency matrices.
This extended interface, which we call Pins+, enables further performance im-
provements for the symbolic tools [40] and on-the-fly partial-order reduction
(POR) [32] for the explicit-state tools. Pins+ will be presented in Section 2.

LTSmin offers extensive analysis of implicit state spaces through Pins: reacha-
bility analysis, including deadlock detection, action detection and invariant/asser-
tion checking, but since recently also verification of Linear Time (LTL) and
modal µ-calculus properties. The toolset and its architecture have been previ-
ously presented in, e.g., [7], [5] and [8]. This article covers the changes since then.
An up-to-date overview of LTSmin is in Figure 1. The toolset is open source.3

The languages supported by LTSmin are listed in Table 1, including newly
added support for probabilistic (Mapa) and timed systems (Uppaal) and for
boolean equation systems with data types (Pbes). New is also the possibility
to add a new language front-end by providing a dynamically loaded .so-library
implementing the Pins interface. These additions will be presented in Section 3.

Table 1: Languages supported by LTSmin.

Uppaal Timed automata.
Mapa Process algebra for Markov automata from the Scoop tool.
Dve The modelling language of the DiVinE model checker.
Promela The modelling language of the Spin model checker.
mCRL2 Process algebra.
Pbes Parameterised Boolean Equation Systems.
Etf Built-in symbolic format.

3Source code available at: https://github.com/utwente-fmt/ltsmin.
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In the explicit-state tools, new multi-core algorithms provide scalable LTL
checking with POR and state compression. The symbolic tools have been ex-
tended with the multi-core decision diagram (DD) packages Sylvan and LDDmc,
enabling multi-core symbolic analysis algorithms by parallelising their DD op-
erations. A symbolic parity game solver has been added, enabling multi-core
symbolic µ-calculus checking. These additions will be described in Section 4 and 5.

2 The Pins-architecture of LTSmin

The starting point of our approach is a generalised implicit model of systems,
called the Partioned Next-State Interface (Pins). An overview of Pins functions
is in Table 2. The functions InitialState, NextState and StateLabel are
mandatory, as well as the state vector length N , the number of transition groups
K, and the names and types of labels, slots and actions. Together, these give rise
to a transition system, see Section 2.1.

On top of this basic Pins interface, we distinguish several axes of exten-
sions, A1 till A∞, which together form the extended Pins+ interface. These
extensions allow to expose enough structure, in the form of information about
dependency relations, to enable high-performance algorithms. The first axis of
such information is provided by the functions labelled A1: the read and write
dependency matrices (see [40]). LTSmin’s POR layer (see Section 4.3) requires
guards, exported as special state labels, and the GuardMatrix, StateLabelM
and DoNotAccord dependency matrices – the functions labelled A2. The
definitions of the dependencies and guards are given in Section 2.2.

The simulation relation over states provided by the CoveredBy function,
labelled A3, allows powerful subsumption abstraction [14] in our algorithms.
Timed language formalisms allow such abstractions as described in Section 3.2. In
the future, a symmetry-reduction layer, a la [17], could implement CoveredBy.

Other named matrices, can be added to the generic GetMatrix function,
which we label A∞. This is used to increase POR’s precision and facilitate
statistical systems such as with Mapa (see Section 3.1).

We write Matrix(x) as shorthand for {y | (x, y) ∈Matrix}.

Table 2: Functions in Pins+ are divided along multiple axes.

Level Function Type Description

B0 InitialState SP Initial state.
B0 NextStatei SP → ℘(A× SP) Successors and action label for group i.
B0 StateLabel SP × L → N State label.

A1 ReadMatrix BK×N Read dependency matrix (Definition 2).

A1 WriteMatrix BK×N Write dependency matrix (Definition 3).

A2 GuardMatrix BK×G Guard/transition group matrix (Definition 5).

A2 StateLabelM BG×N State label dependency matrix (Definition 4).

A2 DoNotAccord BK×K Matrix for non-commutativity of groups [32].

A3 CoveredBy SP × SP → B State covering function.

A∞ GetMatrixName BX×Y Predefined X × Y matrix named Name.
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2.1 Partitioned transition systems

In Pins, states are vectors of N values. We write 〈x1, . . . , xN 〉, for vector variables,
or simply x for the state vector. Each position j in the vector (1 ≤ j ≤ N) is
called a slot and has a unique identifier and a type, which are used in the language
front-ends to specify conditions and updates. The NextState function, which
computes the successors of a state, is partitioned in K disjunctive transition
groups, such that NextState(x) =

⋃
1≤i≤K NextStatei(x). We have action

labels a ∈ A and a set of M state labels L. A model, available through Pins,
gives rise to a Partitioned Transition System (PTS).

Definition 1. A PTS is a structure P =
〈
SP ,→P , s0, L

〉
, where

– SP = S1×· · ·×SN is the set of states s ∈ SP , which are vectors of N values,
– →P =

⋃K
i=1→i is the labelled transition relation, which is a union of the K

transition groups →i ⊆ SP ×A× SP (for 1 ≤ i ≤ K),
– s0 =

〈
s0

1, . . . , s
0
N

〉
∈ SP is the initial state, and

– L : SP × L → N is a state labelling function.

We write s
a−→i t when (s, a, t) ∈ →i for 1 ≤ i ≤ K, and s

a−→P t when
(s, a, t) ∈ →P . Considering L as binary state labels, L(s) denotes the set of labels
that hold in state s, i.e. we define L(s) := {` | L(s, `) 6= 0}.

When the LTL layer is used, the output PTS is interpreted as a Büchi
automaton, where accepting states are marked using a special state label. When
using the µ-calculus layer or the Pbes front-end, the output PTS is interpreted
as a parity game, where two state labels encode the player and the priority.
When using the Mapa front-end, the output is a Markov automaton, where
transitions are decorated with labels, representing hyperedges with rates. For all
these interpretations, the same Pins interface is used.

2.2 Dependencies and guards

The partitioning of the state vector into slots and of the transition relations into
transition groups, enables to specify the dependencies between the two, i.e., which
transition groups touch which slots of the vector.

Previously, we used a single notion of dependency; now we distinguish read,
write and label dependencies [32,40]. The read and write dependencies allow to
project state vectors to relevant slots only, improving performance of both caching,
state compression and the symbolic tools. Label dependencies enable POR. The
following definitions apply to each PTS P =

〈
SP ,→P , s0, L

〉
.

Definition 2 (Read independence). Transition group i is read-independent
from state slot j, if for all s, t ∈ SP with s→i t, we have:

∀rj∃r′j ∈ Sj : 〈s1, . . . , rj , . . . , sN 〉 →i

〈
t1, . . . , r

′
j , . . . , tN

〉
∧ r′j ∈ {rj , tj} ,

i.e., whatever value rj we plug in, the transition is still possible, the values tk
(k 6= j) do not depend on the value of rj, and the value of state slot j is either
copied (r′j = rj) or overwritten (r′j = tj).
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Definition 3 (Write independence). Transition group i is write-independent
from state slot j, if:

∀s, t ∈ SP : 〈s1, . . . , sj , . . . , sN 〉 →i 〈t1, . . . , tj , . . . , tN 〉 ⇒ (sj = tj) ,

i.e., state slot j is never modified in transition group i.

Definition 4 (Label independence). Label l ∈ L is independent from state
slot j, if:

∀s ∈ SP , tj ∈ Sj : L(〈s1, . . . , sj , . . . , sN 〉 , l) = L(〈s1, . . . , tj , . . . , sN 〉 , l) .

Definition 5 (Guards). Transition guards are represented as a subset of labels
G ⊆ L. To each transition group we associate a set of guards. The guards
associated with group i, denoted G(i), are evaluated conjunctively, i.e., transition
group i is only enabled in state s if all guards g ∈ G(i) hold: if s →i t then
G(i) ⊆ L(s).

We have provided semantic requirements for read, write and label indepen-
dence relations. The language front-end must provide these dependency matrices.
It can approximate dependencies using static analysis, for instance by checking
occurrence of variables in expressions. Note that it is always safe to assume that
groups/labels do depend on a state slot.

3 Language front-ends

LTSmin already supported the languages mCRL2 [11], DiVinE [3], and Spin’s
Promela [26] (through SpinS [4]). Since recently, also Mapa, Uppaal and
Pbes are available, as well as the ability to load a model from a binary .so-file,
all of which will be discussed in the current section.

3.1 MAPA: Markov Automata Process Algebra

For verification of quantitative aspects of systems, we support Mapa: Markov
Automata Process Algebra. MA’s are automata with non-deterministic choice,
probabilistic choice and stochastic rates, generalizing LTS, PA, MDP and CTMC.
The Scoop tool [43] offers state-space generation for Mapa specifications, apply-
ing several reduction techniques. It is part of the MaMa toolchain [25] for the
quantitative analysis of Markov automata. LTSmin has been extended with a
Mapa language module based on Scoop, allowing for high-performance state
space generation for Mapa specifications. This language module uses Pins+
A∞ to add an inhibit matrix and a confluence matrix. The maximum progress
assumption in the semantics of Markov automata forbids taking stochastic rate
transitions when some action-labelled transition is enabled. This has been im-
plemented using a inhibit matrix : when the higher priority transition is enabled,
other transitions are inhibited. The distributed and symbolic tools of LTSmin
have been extended to handle inhibit matrices for Mapa. The distributed tool
also includes confluence reduction.
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3.2 Uppaal: Timed Automata

The langague frontend for Uppaal timed automata is based on Opaal [12].
The C-code generated by Opaal implements the Pins+ A3 interface. Timed
automata require symbolic states to handle time, for which Opaal relies on the
difference bounds matrices from the DBM-library. This is supported by Pins, by
dedicating two reserved state slots for a pointer to a symbolic time abstraction.

Subsumption abstraction can prune large parts of the PTS on-the-fly. LTSmin
checks if two states subsume each other (s v t) via the CoveredBy-relation in
Pins+, which is implemented by a call to the DBM-library. The reduced state
space only consists of v-maximal states. Since v is a simulation relation [14],
the reduced PTS is a valid abstraction of the original PTS. The reachability
algorithms in the multi-core tool perform this abstraction (opaal2lts-mc -u2).
To maintain v-maximal states, the pointers to the DBMs are stored in a separate
lockless multi-map [12].

A new LTL model checking algorithm with subsumption [36] is also supported,
by extending the multi-core cndfs algorithm (see Section 5.1).

3.3 PBES: Parameterized Boolean Equation Systems

Parameterised Boolean Equation Systems (Pbess) extend Boolean equations
with nested fixed points and data parameters. [24, 39] Several verification tasks
are mapped to Pbess by the mCRL2 and CADP toolsets, such as model checking
modal µ-calculus properties and equivalence checking. The mCRL2 toolset offers
various tools for manipulating and solving Pbess. LTSmin now provides high-
performance generation of parity games from Pbess [29], by viewing them as
PTSs with special labels for players and priorities. The Pbes language module is
available via the pbes2lts-* tools. The generated parity games can be solved
by the means described in Section 5.

3.4 C-code via the dlopen interface

The UNIX/POSIX dlopen-interface allows to specify a model or a language directly
in C. We show an example of how this can be done for the Sokoban game board
in Figure 2. The goal of sokoban is for the player (@) to move all boxes ($)

#####

#.$@#
#####

Fig. 2:
Example
board

in the room to destination locations (.) without hitting walls (#).
This behavior is implemented in the function next state in List-
ing 1. For each place in the board, we reserve one slot in the state
vector. We add a state label goal, to distinguish states where the
game is finished. Finally, an initial state function is defined, and
functions returning dependency matrices. These need to be set using
the GBset* functions in Listing 2. Setting the name of the plugin
is also required. sokoboard.c is then compiled as shared library:
gcc -shared -o sokoboard.so dlopen-impl.o sokoboard.o.
To analyse the reachability of the goal label, call, e.g., the multi-core tool:
pins2lts-mc sokoboard.so --invariant="!goal" --trace=solution.gcf.
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Listing 1: sokoboard.c

void next_state(int group, int* src,
void (*callback)(int* dst, int action))

{ int dst[3]; int action;
memcpy(dst, src, 3);
if (group == 0

&& src[1] == EMPTY && src[2] == MAN)
{ dst[1] = MAN; dst[2] = EMPTY;

action = WALK_LEFT;
callback(dst, action);

}
else if (group == 1

&& src[1] == MAN && src[2] == EMPTY)
{ dst[1] = EMPTY; dst[2] = MAN;

action = WALK_RIGHT;
callback(dst, action);

}
else if (group == 2 && src[0] == EMPTY

&& src[1] == BOX && src[2] == MAN)
{ dst[0] = BOX; dst[1] = MAN;

dst[2] = EMPTY; action = PUSH_LEFT;
callback(dst, action);

}
}

int state_label(int* src, int label)
{return label == LABEL_GOAL && src[0] == BOX;}

int* initial_state()
{ return {EMPTY, BOX, MAN}; }

int* read_matrix()
{ return {{0,1,1}, {0,1,1}, {1,1,1}}; }

int* write_matrix()
{ return {{0,1,1}, {0,1,1}, {1,1,1}}; }

int* label_matrix()
{ return {{1,0,0}}; }

Listing 2: dlopen-impl.c

#include <ltsmin/pins.h>
#include <ltsmin/dlopen-api.h>
#include <sokoboard.h>
char pins_plugin_name[] = "sokoban";
void pins_model_init(model_t m)
{ GBsetInitialState(m, initial_state());

GBsetNextStateLong(m, next_state);
GBsetStateLabelLong(m, state_label);
GBsetDMInfoRead(m, read_matrix());
GBsetDMInfoMustWrite(m, write_matrix());
GBsetStateLabelInfo(m, label_matrix());

}

4 Intermediate layers

Between language front-ends and the model checking back-ends, pins2pins-
wrappers provide performance optimisations, state space reductions, and support
for verification of LTL and µ-calculus properties. The caching layer reduces the
number of next-state calls to the language module by storing the projected results
of previous calls. The regrouping layer provides variable reordering, useful for
the symbolic analysis tool, and reduces overhead by merging transition groups.
The current section describes recent innovations in the intermediate layers, which
are all language-independent and agnostic of the underlying model checking
algorithm.

4.1 The LTL layer

LTSmin supports Linear Time Logic (LTL) formulae defined by the grammar:

λ ::= true | false | v==n | !λ | []λ | <>λ | Xλ | λ&&λ | λ||λ | λ->λ | λ<->λ | λUλ | λRλ

The negated formula is translated to a Büchi automaton using ltl2ba [23]. The
product of the PTS and the Büchi automaton is computed on-the-fly, i.e., the
layer does not perform reachability in advance. Instead, it wraps the NextState
function of a language module in its own NextState function, which synchronises
the translated Büchi automaton on the state labels or slot values of successor states
(the expression v == n can refer to a label or a slot named v). The synchronised

7



successors are then passed to the analysis algorithm. A label added by the layer
allows the algorithm to distinguish Büchi accepting states. On-the-fly accepting
cycle detection algorithms are described in Section 5.1.

4.2 The µ-calculus layer

The modal µ-calculus layer supports formulae defined by the grammar:

ϕ ::= true | false | {v = e} | !{v = e} | ϕ && ϕ | ϕ || ϕ | Z | σZ . ϕ | [α]ϕ | <α>ϕ ,

where v is a state variable, e is a value, σ ∈ {mu, nu} is a minimal (mu) or
maximal (nu) fixpoint operator, and α is an action label.

The µ-calculus Pins2Pins layer reads a modal µ-calculus property ϕ from a
file, provided using the --mucalc option, and generates a parity game, which is
the product P × ϕ of the formula and a system P that is explored through Pins.
Like the Büchi automaton, this game is generated on-the-fly. The explicit-state
tools can write the parity game to a file which can be converted to a format that
is readable by the tools pgsolver [20] and pbespgsolve (from mCRL2). The
symbolic tools can write the game to a file, which can be solved by the new LTSmin
tool spgsolver. The symbolic tools also have an alternative implementation
for µ-calculus model checking (available through the --mu option), which is a
fixpoint algorithm applied to the system after reachability. This implementation
also supports CTL* through the translation in [13] (the --ctl-star option).

4.3 The partial-order reduction layer

Partial-Order Reduction (POR, [30,44]) greatly reduces a PTS by pruning irrele-
vant interleavings. LTSmin implements POR as an intermediate layer (cf. Fig-
ure 1). This POR layer (--por) wraps the next-state function of any language
module, and provides a reduced state space to any analysis tool by replacing it
with an on-the-fly reduction function: PorState(s) ⊆ NextState(s).

We rephrased the stubborn set method [44] in terms of guards [32] to achieve
language independence. For any state, a set of (enabled or disabled) stubborn
transitions is computed, and PorState(s) corresponds to the enabled stubborn
transitions. The stubborn set should (1) contain at least one enabled transition
if one exists; (2) contain all non-commuting transitions for the enabled selected
transitions; and (3) contain a necessary-enabling set of transitions for the disabled
selected transitions.

To compute stubborn sets, LTSmin needs structural model information via the
Pins+ A2 interface. For effective POR, we extended Pins transitions with guards
(Definition 5). In particular, a language module must declare when transitions
commute, and the dependencies of guards (Definition 4). The former is declared
with the DoNotAccord : BK×K-matrix. It should satisfy:

Definition 6 (Do-not-accord). Transition groups i and j are according, if

∀s, si, sj ∈ s : s→i si ∧ s→j sj ⇒ ∃t ∈ s : si →j t ∧ sj →i t

Otherwise, they must be declared conflicting in the DoNotAccord matrix.
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Next, the POR layer derives an enabling relation from the provided de-
pendency information. A transition i can only enable guard g, if i writes to a
variable that g depends on: EnableMatrixK×G ≡ {(i, g) |WriteMatrix(i)∩
StateLabelM(g) 6= ∅}. A set of necessary-enabling transitions for a disabled
transition j can then be found by selecting one disabled guard g of j and taking
all transitions that may enable g: EnableMatrix(g).

Optionally, these notions can be further refined by the language module for
more reduction, by providing additional Pins+ A∞ matrices. For example, the
language module can compute a detailed EnableMatrix by static analysis on
assignment expressions and guards, or a DisableMatrix and a co-enabled-
matrix on guards to leverage the power of necessary disabling sets [32].

LTSmin contains heuristics to compute small stubborn sets efficiently. The
user can select a fast heuristic search (--por=heur) or the subset-minimal deletion
algorithm (--por=del). POR preserves at least all deadlock states. The multi-core
algorithms in LTSmin preserves all liveness properties, but this requires additional
interaction with the LTL layer (to know the visible state properties) and the
analysis algorithm (to avoid the so-called ignoring problem, see Section 5.1).

The POR layer is incompatible with the symbolic analysis tool, since after
partial-order reduction all locality and dependence information is lost. The
distributed analysis tool currently only supports POR for deadlock detection.

5 Algorithmic back-ends

LTSmin has distributed [6], multi-core [12,19,35,37], and symbolic [16] back-ends.
Furthermore, connectors to the model-based testing tool JTorx, are available
as the *2torx tools, and to the CADP toolset, through the Open/Cæsar
interface, as the *-open tools. Since its early origins, LTSmin has a sequential
(ltsmin-reduce) and a distributed (ltsmin-reduce-dist) reduction tool. Both
provide strong and branching bisimulation minimisation, while the sequential tool
also supports divergence sensitivity, cycle elimination and minimisation modulo
lumping. In the current section, we highlight the multi-core algorithms for explicit-
state and symbolic model checking, and the symbolic parity game solver.

5.1 Multi-core reachability, POR and LTL checking

Since [37], LTSmin’s multi-core tools were extended beyond reachability analysis,
while improving state compression.

At the basis of our multi-core algorithms is still a lockless hash or tree table
(--state=table/tree) for shared state storage coupled with a dynamic load bal-
ancer [33,34]. However, state compression has been enhanced by extending the tree
with a concurrent Cleary compact hash table [10, 45] (--state=cleary-tree),
regularly yielding compressed sizes of 4 bytes per state [35, Tab. 11.4] without
compromising completeness. Incremental tree compression [35, Sec. 3.3.4] uses the
WriteMatrix from Pins+ to limit the number of hash computations, ensuring
similar scalability and performance to plain hash tables [34].
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LTSmin’s state storage provides ample flexibility for different search orders,
enabling LTL verification by traditial linear-time algorithms, in particular nested
depth-first search (NDFS). The cndfs algorithm (--strategy=cndfs) runs
multiple semi-independent DFS searches which are carefully synchronized in the
backtrack [19]. dfsfifo (--strategy=dfsfifo) combines this with breadth-first
search to find livelocks, an important subet of LTL [31]. The latter algorithm
avoids the ignoring problem in POR [18], but the combination of POR and full
LTL was until recently not possible in multi-core LTSmin.

The ignoring problem occurs when POR consistently prunes the same relevant
action infinitely often [18]. It can be solved by fully exploring one state s along
each cycle in the PTS (PorState(s) := NextState(s)). The problem of
detecting cycles while constructing the PTS on-the-fly is usually solved with
DFS [18], which is hard to parallelize [2]. Exploiting the DFS-based parallel
algorithms, this problem is efficiently solved with a new parallel cycle proviso [38]
(--proviso=cndfs). Cycles are exchanged with the POR layer via Pins.

We have shown before [4, 31] that our multi-core reachability approach ex-
hibits almost ideal scalability up to 48 cores, even for very fast NextState
implementations, like SpinS. cndfs outperforms [4, 19] other algorithms for
multi-core LTL model checking [1, 27]. For further information on multi-core
algorithms and data structures, see [35].

5.2 Multi-Core decision diagrams

The symbolic back-end of LTSmin has been improved in several ways. First, it
has been extended with the multi-core decision diagram packages Sylvan and
LDDmc [16] (--vset=sylvan/lddmc). Second, two parallel reachability algo-
rithms have been added, based on the task-based parallelism framework Lace [15,
16]. Third, the distinction between read and write dependencies in Pins+ improves
the symbolic algorithms by reducing the size of transitions relations [40].

5.3 Symbolic parity game solving

We implemented Zielonka’s recursive algorithm [46] using decision diagrams, which
is available in the symbolic tools (--pg-solve) or stand-alone in spgsolver. The
tool solves symbolic parity games, generated by the symbolic tool, and returns
whether the game has a winning strategy for player 0. When the game has been
generated using the µ-calculus layer, this answer corresponds to whether P |= ϕ.
The solver currently does not output a strategy.

6 Case studies

The following two case studies demonstrate the use of having both explicit-state
and symbolic approaches to attack problems. The second case also demonstrates
the power of µ-calculus model checking for solving games.4

4Installation instructions and case studies: https://github.com/utwente-fmt/

ltsmin-tacas2015.
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6.1 Attacking the RERS Challenge

LTSmin participated in the RERS [28,42] challenges of 2012, 2013 [41] and 2014,
winning several first prizes. The flexibility of LTSmin allowed us to address the
RERS challenge problems from different angles. We will discuss three ways to
connect LTSmin to the challenge problems. We also demonstrate how LTSmin’s
backend tools check for assertion errors and temporal properties.

Each RERS problem consists of a large C-program, encoding a system of
Event-Condition-Action rules. The program operates in an infinite loop modifying
the global state. In each iteration, the program gets an input from a small alphabet
and checks for assertion errors. If the condition of one of the rules is met, it
generates an output symbol and changes the state for the next iteration.

Linking LTSmin to RERS programs. In the first approach, a RERS C-program
is translated to a modelling language that is already supported by LTSmin. We
took this approach in 2012, by translating RERS programs to Promela and to
mCRL2. The translations are rather straightforward, since the ECA-rules can
be readily reverse-engineered from the C-programs.

A fundamentally different approach is to create a new language module for
(a subclass of) C-programs. This was our approach in 2013 and 2014. In 2013,
we just wrapped the body of the main-loop into a single, monolithic next-state
function, compiled in a separate binary (.so file). This is a robust solution, since
the original code is run during model checking.

This monolithic approach worked fine for multi-core model checking. However,
it leads to a lack of “locality”: there is only one transition, which reads and
writes all state variables. In order to apply symbolic model checking, our 2014
approach was to adapt the C-language module, by providing a separate transition
group for each ECA rule, checking its conditions and applying the state change.
Edge labels are added, to indicate the input and output values and the assertion
violations. In this partitioned view, every transition group only touches a couple
of variables, enabling symbolic model checking. With Sylvan linked to LTSmin,
RERS 2014 was the first large case to which we applied multi-core symbolic
model checking.

Using LTSmin to check properties. We show here how LTSmin can be used
to check properties of Problem2.c from the RERS challenge 2014. The original
C-code is optimized and transformed as indicated above. We assume that the
transformed code is compiled and available in a shared object Problem.so.

In the following dialogue, we request the symbolic model checker to find all
actions with prefix error. Flag --no-exit avoids that LTSmin exits after finding
the first error. We also request to store concrete error traces in a subdirectory
and print one of them in human readable format. LTSmin quickly finds 23 errors.

> pins2lts-sym Problem.so --action=error --trace=Error/ --no-exit

pins2lts-sym: writing to file: Error/error_6.gcf

pins2lts-sym: writing to file: Error/error_8.gcf

^C
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> ltsmin-printtrace Error/error_6.gcf | grep action | cut -f3 -d=

"input_3" "output_20" ... "input_3" "output_26" "error_6"

Actually, the state space of this example is very big and LTSmin keeps
searching for more errors. In order to do an exhaustive search, we throw more
power, by using the parallel BFS strategy and Sylvan’s (enlarged) multi-core
multi-way decision diagrams [16]. We also request static variable reordering,
to keep the MDDs small. With --when, we request timing information. The
following experiments are run on a 48-core machine with 132 GB RAM. The
parallel symbolic model checker of LTSmin computes the full state space within
2 minutes. All 1.75 billion states, divided over 480 BFS levels, are stored in about
1 million MDD nodes.

> pins2lts-sym Problem.so --order=par-prev --regroup=gs --when \

--vset=lddmc --lddmc-tablesize=30 --lddmc-cachesize=28

pins2lts-sym: Using 48 CPUs

pins2lts-sym, 28.076: level 90 is finished

pins2lts-sym, 113.768: level 480 is finished

pins2lts-sym: ... 1750528171 (~1.75e+09) states, 1158486 BDD nodes

Alternatively, we may decide to switch to the explicit-state multi-core reachabil-
ity engine [33]. We request a strict breadth-first strategy, to facilitate comparison
with the symbolic run. To squeeze the maximum out of our machine, we combine
recursive tree compression [34] with Cleary’s compact hashing [10,45]. Within a
minute we learn that there are no new errors up to depth 90. LTSmin is able to
traverse the full state space exhaustively within 5 minutes, generating over 1.75
billion states and 2.4 billion transitions.

> pins2lts-mc Problem.so --strategy=sbfs --state=cleary-tree --when

pins2lts-mc(18/48), 45.791: ~90 levels ~125829120 states ~191075472 trans

pins2lts-mc( 0/48), 298.565: Explored 1750528171 states 2445589869 trans

The explicit multi-core tool can also check LTL properties, using multi-core
NDFS (cndfs, [19]). The LTL formula refers to integer variables in the original
C-program a94 and a95. With --ltl-semantics=ltsmin we insist on checking
infinite paths only, i.e., we don’t consider traces that end in an assertion error.
The violated trace can be printed as above, and will end in a lasso.

> pins2lts-mc Problem.so --ltl=’a94==9 U a95==12’ \

--strategy=cndfs --ltl-semantics=ltsmin --trace=Error/ltl.gcf

pins2lts-mc( 0/48): Accepting cycle FOUND at depth 11!

pins2lts-mc( 3/48): Writing trace to ltl.gcf

6.2 Solving Connect Four

We explore the Connect Four game, originally played on a 7×6 board between two
players: yellow and red, which is available in the examples directory of mCRL2.
For the first run, we reduced the board size to 5×4, for which the model has
7,039,582 states.
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(b) Separated.

Fig. 3: Matrix.

The matrix is in Fig. 3a. LTS generation using lps2lts

(mCRL2) takes 85 seconds and 539 MB. Using 16 cores,
multi-core LTSmin takes 22 seconds and 63 MB. But sym-
bolic LTSmin needs 124 seconds.

This is caused by the monolithic summands in the spec-
ification (the dense rows in Figure 3a), representing the
winning condition. We split the condition in separate parts
and let the game continue after a winning move has been
done. The matrix of the problem becomes more sparse, see
Figure 3b. Note that the four r’s in a row correspond to
the four winning tiles. The symbolic tool now generates a
different state space of the same game (5,464,758 states) in
less than a second. mCRL2 takes 88 seconds for this version.
The exploration time of LTSmin for a 6×5 board is 2.4
seconds, for 9.78× 109 states in 41,239 MDD nodes.

Next, we generate a PBES with mCRL2, to encode the
µ-calculus property (in file yellow wins.mcl) that player
Yellow has a winning strategy, and solve it with LTSmin:

mu X . [Wins(Red)]false && <Move>(<Wins(Yellow)>true || [Move]X)

> lps2pbes -s -f yellow_wins.mcl four5x4.lps four5x4.pbes

> pbes2lts-sym --mcrl2=-rjitty --regroup=gs --pg-solve \

--vset=lddmc --order=par-prev four5x4.pbes

For the 5×4-board mCRL2 takes 193 seconds, but the symbolic tool of LTSmin
77 seconds, to compute that the starting player has no winning strategy.

7 Discussion

There are several toolsets that take a similar approach, supporting a generic
interface, or offer similar, multi-core or symbolic, analysis algorithms. The table
below provides a brief qualitative comparison of the available types of algorithms
and the supported logics. The last column indicates wether multiple input
languages are supported, and if so, through which interface.

The Pins interface is the main differentiator of LTSmin. It is sufficiently
general to support a wide range of modelling languages. At the same time, the

Toolset m
ulti

-c
or

e

dist
rib

ute
d

sy
m

bol
ic

µ-
ca

lcu
lu

s

LT
L

PO
R

Language

LTSmin yes yes yes yes yes yes any (Pins)
mCRL2 [11] no no no yes no no fixed

CADP [22] no yes no yes* no yes any (Open/C)
DiVinE [3] yes yes no no yes yes any (CESMI)
Spin yes yes no no yes yes fixed

NuSMV [9] no no yes no yes no fixed

* CADP supports µ-calculus formulae up to alternation depth 2.
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dependency matrices provide sufficient structural model information to exploit
locality in the analysis algorithms. As a consequence, LTSmin is the only language-
agnostic model checker that supports on-the-fly symbolic verification and full
LTL model checking with POR. Due to the modular architecture, the user can
freely choose a verification strategy depending on the problem at hand.
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