
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Guard-based Partial-Order
Reduction

Alfons Laarman,1,2 Elwin Pater,2 Jaco van de
Pol,2Henri Hansen3

1 Formal Methods in Systems Engineering, Vienna University
of Technology, Austria??

e-mail: alfons@laarman.com
2 Formal Methods and Tools, University of Twente, The

Netherlands
e-mail: vdpol@cs.utwente.nl, elwin.pater@gmail.com

3 Department of Mathematics, Tampere University of Tech-
nology, Finland
e-mail: henri.hansen@tut.fi

The date of receipt and acceptance will be inserted by the
editor

Abstract. This paper aims at making partial-order re-
duction independent of the modeling language. To this
end, we present a guard-based method which is a general-
purpose implementation of the stubborn set method. We
approach the implementation through so-called necessary
enabling sets and do-not-accord sets, and give an algo-
rithm suitable for an abstract model checking interface.
We also introduce necessary disabling sets and heuristics
to produce smaller stubborn sets and thus better reduc-
tion at low costs. We explore the effect of these methods
using an implementation in the model checker LTSmin.

We experiment with partial-order reduction on a num-
ber of Promela models, on benchmarks from the BEEM
database in the DVE language, and with several with
LTL properties. The efficiency of the heuristic algorithm
is established by a comparison to the subset-minimal
Deletion algorithm and the simple closure algorithm. We
also compare our results to the Spin model checker. While
the reductions take longer, they are consistently better
than Spin’s ample set and often surpass the upper bound
for the process-based ample sets, established empirically
earlier on BEEM models.

1 Introduction

Model checking is an automated method of verifying the
correctness of concurrent systems by examining all pos-
sible execution paths for incorrect behaviour. The main
challenge for model checking is the state space explosion,

?? Sup. by Austrian National Research Network S11403-N23 (RiSE)
of the Austrian Science Fund (FWF) and by the Vienna Science and
Technology Fund (WWTF) through grant VRG11-005.

which refers to the exponential growth in the number of
states obtained by interleaving executions of several sys-
tem components. Model checking emerged in the 1980s [5]
and several advances have pushed its boundaries. Among
those advances, partial-order reduction is one of the most
prominent examples.

Partial-order reduction (POR) exploits the fact that
in concurrent systems, not all orderings or interleavings
of simultaneously enabled transitions need to be explored.
It has been characterized as model checking with repre-
sentatives [39], because instead of an exhaustive search,
verification needs to consider only a subset of all possi-
ble successors of each state to ensure all behaviours of
interest to the verified property are preserved.

The idea to exploit commutativity between concurrent
transitions has been investigated by several researchers,
leading to various algorithms for computing sufficient suc-
cessor sets. The challenge is to compute this subset during
state space generation (on-the-fly), using syntactic and
static information obtained from the system description.

Already in 1981, Overman [35] suggested a method
to avoid exploring all interleavings, followed by Val-
mari’s [46,50,49] stubborn sets in 1988, 1991 and 1992.
Also from 1988 onwards, Peled [22] developed the ample
set [39,40], later extended by Holzmann and Peled [19,
40], Godefroid and Pirottin [13,15] the persistent set [14],
and Godefroid and Wolper [16] sleep sets. These foun-
dations have been extended and applied in numerous
papers over the past 15 years.

Problem and Contributions. Previous work defines partial-
order reduction in terms of different formalisms: Petri-
nets [56], parallel components with local program coun-
ters, called processes [19,14], a parallel composition of
labeled transition systems [53], as well as the more gen-
eral transition/variable systems [48,50]. While focus on
a specific formalism allows the exploitation of formalism-
specific properties, like fairness [40] and token condi-
tions [52], it also complicates the application to other
formalisms, for instance, rule-based systems [9]. Moreover,
most current implementations are tightly coupled with
their particular specification languages. Our approach
can be applied to any of these settings as long as the nec-
essary abstractions such as guards, transition accordance,
and necessary enabling and disabling sets are identified.

The Pins interface [3,31] (see Section 4.4) is one
solution that allows for separating language front-ends
from verification algorithms. Through Pins (Partitioned
Interface to the Next-State function), a user can use var-
ious high-performance model checking algorithms for his
favourite specification language, cf. Figure 1. Providing
POR as Pins2Pins wrapper once and for all benefits
every combination of language and algorithm. An impor-
tant question is whether and how an abstract interface
like Pins can support partial-order reduction.

We propose a solution that is based on stubborn sets.
This theory shows how to choose a subset of transitions,

2 Alfons Laarman et al.: Guard-based Partial-Order Reduction

mCRL2 Promela DVE UPPAAL

Transition Variable reordering Partial−order
caching Transition grouping reduction

Symbolic

PINS

PINS

Pins2pins
Wrappers

Distributed Multi−core

Figure 1. Modular Pins architecture of LTSmin

enabled and disabled, based on a careful analysis of
their independence and commutativity relations. These
relations have been described on the abstract level of
transition systems before [50]. Additionally, within the
context of Petri-nets, the relations were refined to include
multiple enabling conditions, a natural distinction in this
formalism [52].

In Section 3, we define the theory of stubborn sets,
and provide a general purpose version of it that is suitable
for implementation in a complete language independent
setting. Our approach assumes only that transitions have
guard conditions that can be enabled and disabled by
other transitions.

In Section 4, we extend Pins with the necessary infor-
mation: a do-not-accord matrix and optional; necessary
enabling matrix on guards. In addition, we introduce
novel necessary disabling sets and a new heuristic-based
selection criterion. As optimal stubborn sets are expensive
to compute precisely [52], our heuristic finds reasonably
effective stubborn sets fast, hopefully leading to smaller
state spaces. In Section 5, we show how LTL can be
supported.

Our implementation resides in the LTSmin toolset [3],
based on Pins. Any language module that connects to
Pins now obtains POR without having to bother about
its implementation details, it merely needs to export
transition guards and their dependencies via Pins. We
demonstrate this by extending the front-end in LTSmin
for DVE and Promela [2]. This allows a direct compar-
ison to Spin [18] (Section 7), which shows that the new
algorithm generally provides more reduction using less
memory, but takes more time to do so. We demonstrate
that the method yields more reduction than the best
reduction using process-based ample sets that rely on
dynamic enabling and disabling relations, reported in
the empirical work by Geldenhuys et al. [12] on the Dve
BEEM benchmarks [38].

Summarising, these are the main contributions presented
in this work:

1. Guard-based partial-order reduction, which is a language-
independent generalization of the stubborn set method;

2. Some improvements to efficiently compute smaller
stubborn sets:
(a) A refinement based on necessary disabling sets;

(b) A heuristic selection criterion for necessary en-
abling sets;

3. Two language module implementations exporting
guards with dependencies for a the model checker
LTSmin;

4. An empirical evaluation of guard-based partial-order
reduction in LTSmin:
(a) A comparison of resource consumption and effec-

tiveness of POR between LTSmin [3], and Spin [18]
on 18 Promela models/5 LTL problems.

(b) A comparison with the best reductions achieved
with the ample-set method, as reported by Gelden-
huys et al. [12], on Dve BEEM models.

Compared to the current paper’s prequel [29], we now
also extend guard-based partial-order reduction with:
1. The weak stubborn set theory which is a theoretically

more powerful yet complicated version of stubborn
sets;

2. A new formulation of the deletion algorithm, which
guarantees subset minimal stubborn sets, and there-
fore provides a good baseline to compare our heuristics
approach against;

3. A discussion on the implementation of the algorithms
and their complexity;

4. Experiments that better illustrate the benefits and
costs of the necessary disabling sets and the heuristic
stubborn set calculation;

5. And experiments that demonstrate some benefits of
the weak stubborn set theory for Promela models.

2 A Computational Model of Guarded Transitions

In the current section, we provide a model of computation
comparable to [12], leaving out the notion of processes
on purpose. It has three main components: states, guards
and transitions. A state represents the global status of a
system, guards are predicates over states, and a transition
represents a guarded state change.

Definition 1 (state). Let S = E1 × . . .× En be a set
of vectors of elements with some finite domain. A state
s = 〈e1, . . . , en〉 ∈ S associates a value ei ∈ Ei to each
element. We denote a projection to a single element in
the state as s[i] = ei.

Definition 2 (guard). A guard g : S → B is a total
function that maps each state to a boolean value, B =
{true, false}. We write g(s) or ¬g(s) to denote that
guard g is true or false in state s. We also say that g is
enabled/disabled.

Definition 3 (structural transition). A structural
transition t ∈ T is a tuple (G, a) such that a is an
assignment a : S → S and G is a set of guards, also
denoted as Gt. We denote the set of enabled transitions

by en(s) := {t ∈ T |
∧
g∈Gt g(s)}. We write s

t−→ when

t ∈ en(s), s
t−→ s′ when s

t−→ and s′ = a(s), and we

Alfons Laarman et al.: Guard-based Partial-Order Reduction 3

write s
t1t2...tk−−−−−→ sk, when ∃s1, . . . , sk ∈ S : s

t1−→ s1
t2−→

s2 . . .
tk−→ sk.

Definition 4 (state space). Let s0 ∈ S and let T be
the set of transitions. The state space from s0 induced
by T is MT = (ST , s0, ∆), where s0 ∈ S is the initial
state, and ST ⊆ S is the set of reachable states, and
∆ ⊆ ST ×T ×ST is the set of semantic transitions. These
are defined to be the smallest sets such that s0 ∈ ST ,

and if t ∈ T , s ∈ ST and s
t−→ s′, then s′ ∈ ST and

(s, t, s′) ∈ ∆.

Guards or conditions are used also in [52, Def. 6],
where they take the role of enabling conditions for dis-
abled transitions. We explore their role on disabling of
transitions as well for our necessary disabling sets in
Section 4.2.

In the rest of the paper, we fix an arbitrary set of
vectors S = E1 × . . . × En, initial state s0 ∈ S, and
set of transitions T , with induced reachable state space
MT = (ST , s0, ∆). We often just write “transition” for
elements of T .

It is easy to see that our model is general enough to
express processes as in [12]; by considering the program
counter of each process as a normal state variable, a sep-
arate guard can check its current value, and a transition
can update its value. Moreover, the definition can also be
applied to models without any natural notion of a fixed
set of processes, for instance, rule-based systems such as
the linear process equations in mCRL [9].

Besides guarded transitions, structural information is
required on the exact involvement of state variables in a
transition.

Definition 5 (disagree sets). Given states s, s′ ∈ S,
for 1 ≤ i ≤ n, we define the set of indices on which s and
s′ disagree as δ(s, s′) := {i | s[i] 6= s′[i]}.

Definition 6 (affect sets). For t = (G, a) ∈ T and
g ∈ G, we define
1. the test set of g is Ts(g) ⊇ {i | ∃s, s′ ∈ S : δ(s, s′) =
{i} ∧ g(s) 6= g(s′)},

2. the test set of t is Ts(t) :=
⋃
g∈G Ts(g),

3. the write set of t is Ws(t) ⊇
⋃
s,s′∈ST δ(s, s

′) with

s
t−→ s′,

4. the read set of t is Rs(t) ⊇ {i | ∃s, s′ ∈ S : δ(s, s′) =

{i} ∧ s t−→ ∧s′ t−→ ∧ Ws(t) ∩ δ(a(s), a(s′)) 6= ∅}
(notice the difference between S and ST), and

5. the variable set of t is Vs(t) := Ts(t)∪Rs(t)∪Ws(t).

Although these sets are defined in the context of
the complete state space, they may be statically over-
approximated (⊇) by the language front-end.

Example 1. Suppose s ∈ S = N3, consider the transition:
t := IF (s[1] = 0 ∧ s[2] < 10) THEN s[3] := s[1] + 1. It
has two guards, g1 = (s[1] = 0) and g2 = (s[2] < 10),
with test sets Ts(g1) = {1},Ts(g2) = {2}, hence: Ts(t) =

{1, 2}. The write set Ws(t) = {3}, so Vs(t) = {1, 2, 3}.
The minimal read set Rs(t) = ∅ (since s[1] = 0), but
simple static analysis may over-approximate it as {1}.

3 Partial-Order Reduction with Stubborn Sets

We now first give the definition of stubborn sets. We
follow the definitions from [51, Section 7.4] with minor
differences, and include some aspects from Godefroid’s
thesis [14]. Second, we explain how stubborn sets can be
calculated efficiently.

3.1 Stubborn Set Theory

A stubborn set for a state s is a subset Ts ⊆ T of all
transitions (disabled and enabled) used to reduce the
successors of s. We call the complement T \ Ts the non-
stubborn transitions. The non-stubborn transitions in-
clude all transitions at s that may be omitted from en(s),
possibly omitting an entire sequence of transitions. i.e.
future computations that are enabled by a non-stubborn
transition.

Definition 7 (Stubborn set). Given a state s, the set
Ts ⊆ T is a stubborn set at s, if it satisfies the following
two conditions.

D1 For every t ∈ Ts and t1, t2, . . . , tn /∈ Ts, if s t1,...,tnt−−−−−→ s′n,
then s tt1,...,tn−−−−−→ s′n, and

D2 Either en(s) = ∅, or there is at least one t ∈ Ts such
that for every t1, t2, . . . , tn /∈ Ts, s t1,...,tnt−−−−−→ .

It is perhaps easiest to think of the conditions as talking
about the relationship between omitted transitions and
stubborn transitions. D1 says that if t is stubborn, and
enabled after some sequence of omitted transitions, then
t is also enabled at the initial state and the omitted
sequence as a whole commutes with t. This is illustrated
in the following graphically; the vertical transition is
stubborn while the horizontal sequence consists of non-
stubborn transitions:

s s1 · · · sn−1 sn

s′n

t1−→ tn−→

t−→

⇓
s

s′ s′1 · · · s′n−1 s′n
t1−→ tn−→

t−→

D2 guarantees that some stubborn transition t – we
call it a key transition – remains enabled if only non-
stubborn transitions are explored. If Ts is a stubborn
set, we write T ks for the subset of Ts of transitions that
satisfy D2.

4 Alfons Laarman et al.: Guard-based Partial-Order Reduction

s

s1

sn
sd

t1

t2

t3

Ts

t1

t2

t3

Figure 2. Stubborn set

D1 guarantees that we can delay the execution of
non-stubborn transitions without losing the reachability
of any deadlock states. Figure 2 illustrates this; since s is
not a deadlock state, sd is still reachable after executing
a key transition from Ts. The benefit is that, for the
moment, we avoid exploring (and storing) states such as
s1, . . . , sn. “For the moment”, because these states may
still be reachable via other stubborn paths. Incidentally,
this is the reason that smaller stubborn sets are only a
heuristic for obtaining smaller state spaces.

This theoretical notion of stubborn sets is a semantic
and dynamic definition, as it refers to executions starting
from a given state. The future of the current state is of
course not known until it is explored, so we need some
static information that allows for computing a stubborn
set. Furthermore, our definition identifies the so-called
weak stubborn sets. Weak sets are more general than
strong stubborn sets, which increases the chances of
finding a set which yields better reduction [51, Sec. 7.4].

The strong notion of stubborn sets – which is more or
less equal to ample and persistent sets - requires the D2
condition to hold for all enabled transitions of the stub-
born set, or conversely, no omitted sequence is allowed to
disable any stubborn transition. A stubborn set Ts is said
to be a strong stubborn set if Ts ∩ en(s) = T ks . Strong
stubborn sets coincide with the stubborn sets defined
in [14].

Definition 8. First, we define strong according with as
those coenabled transitions that commute and do not
disable eachother:
A ⊆ {(t, t′) ∈ T × T | ∀s, s′, s1 ∈ S : s t−→ s′ ∧ s t′−→ s1 ⇒
∃s′1 : s′ t′−→ s′1 ∧ s1

t−→ s′1}, or illustrated graphically:

s s1

s′

t′−→

t−→ ⇒
s s1

s′ s′1

t′−→

t−→ t−→

t′−→
Its complement is the do-not-accord relation: DNA =
T 2 \A. We denote DNAt = {t′ | (t, t′) ∈ DNA}.

Second, we define left according with as:

B ⊆ {(t, t′) ∈ T ×T | ∀s, s′, s1 ∈ S : s t′−→ s′∧s′ t−→ s′1 ⇒
∃s1 : s t−→ s1 ∧ s1

t′−→ s′1}, or illustrated graphically:

s s′

s1

t′−→

t−→ ⇒
s s′

s1 s′1

t′−→

t−→ t−→
t′−→

Its complement is the do-not-left-accord relation:DNB =
T 2 \ B . We denote DNBt = {t′ | (t, t′) ∈ DNB} and
DNB−1 for the inverse relation: {(t′, t) | (t, t′) ∈ DNB}.

Please note the direction of the relation DNBt; it is
vitally important for Lemma 1.
Each of the following criteria on t, t′ ∈ T is sufficient to
conclude strong accordance:
1. shared variables Vs(t) ∩Vs(t′) are disjoint from the

write sets Ws(t) ∪Ws(t′),
2. t and t′ are never co-enabled, e.g. have different pro-

gram counter guards, or
3. t and t′ do not disable each other, and their actions

commute, e.g. write and read to a FIFO buffer, or
perform atomic increments/decrements of the same
variable.

The criterion 1 is sufficient for left accordance as well, but
criteria 2 and 3 are not; left accordance is asymmetric,
and, for instance, if t′ enables t, then t′ does not left
accord with t.
1. If t is never enabled after t′ is executed, then t′ left

accords with t. E.g., when the t′ sets a variable to a
value that always makes the guard of t false.
We defined the do-not-accord relations instead of

relying on a definition of “dependent”, to underline the
fact that transitions modifying the same variables, for
instance, can “accord”, even though they are in some
superficial sense “dependent”. The definition of strong
do-not-accord is equivalent to Godefroid’s definition of
do-not-accord for enabled transitions. We also need a
necessary enabling relation:

Definition 9 (necessary enabling set [14]). Let t ∈
T \ en(s) be a disabled transition in state s ∈ ST . A
necessary enabling set for t in s is a set of transitions Nt,
such that for all sequences of the form s t1,...,tn−−−−−→ s′ t−→ ,
there is at least one transition ti ∈ Nt, for some 1 ≤ i ≤ n.

To find a necessary enabling set for a disabled tran-
sition t, which we denote with find nes(t, s), Godefroid
uses fine-grained analysis, which depends crucially on
program counters. The analysis can be roughly described
as follows:
1. If t is not enabled in global state s, because some

local program counter has the “wrong” value, then
use the set of transitions that assign the “right” value
to that program counter as necessary enabling set;

2. Otherwise, if some guard g for transition t evaluates
to false in s, take all transitions that write to the
test set of that guard as necessary enabling set, i.e.
include all transitions that might change g.

In Section 4, we show how to avoid program counters
with guard-based POR.

Alfons Laarman et al.: Guard-based Partial-Order Reduction 5

Note that the above relations can be safely over-
approximated: We may choose larger do-not-accord or
necessary enabling relations, if our static analysis does
not find the exact relation.

Lemma 1. A set Ts of transitions is stubborn in a state
s, if the following conditions hold for every t ∈ Ts
1. If t is disabled in s, then ∃Nt ⊆ Ts (multiple sets Nt

can exist), and
2. If t is enabled in s, then either DNAt ⊆ Ts, or
DNBt ⊆ Ts

3. en(s) = ∅ or ∃t ∈ Ts ∩ en(s) : DNAt ⊆ Ts

Proof. Assume that Ts satisfies the above conditions,
and that t1, t2, . . . , tn /∈ Ts.

Firstly, let t ∈ Ts, and s t1,...,tnt−−−−−→ s′n. If t is disabled
in s, then Nt ⊆ Ts, by the above. But by definition of Nt,
for at least one 1 ≤ i ≤ n, ti ∈ Nt, which leads to contra-
diction. Therefore, t must be enabled in s. s tt1,...,tn−−−−−→ s′n
follows by induction: when n = 1, this follows from
the definitions of both DNAt and DNBt. Suppose then
that s t1,...,tit−−−−−→ s′i implies that s tt1,...,ti−−−−−→ s′i for i ≤ n.

If DNAt ⊆ Ts, then s t1,...,tit−−−−−→ s′i holds for every i, in
particular for i = n − 1 and tn /∈ DNAt gives D1. On
the other hand, if DNBt ⊆ Ts, then s t1,...,tnt−−−−−→ implies
s t1,...,tn−1t−−−−−−−→ must hold, because tn /∈ DNBt, which com-
bined with the inductive hypotheses implies D1.

If en(s) = ∅, D2 holds trivially. Otherwise there exists
t ∈ en(s) ∩ Ts, so that DNAt ⊆ Ts. Therefore, for every
t1, t2, . . . , tn /∈ Ts, s t1,...,tnt−−−−−→ must hold, by the same
reasoning as for D1, and therefore D2 holds. �

If we takeDNB = T 2, the second condition of Lemma 1
makes the third one redundant and directly gives strong
stubborn sets. It should be noted that Lemma 1 does not
fully characterize stubborn sets, and neither does it mean
that stubborn sets that do not satisfy the lemma are nec-
essarily impractical. The relationDNB is by its definition
stronger than needed, and under certain assumptions can
be replaced by weaker relations. For instance in the case
of P/T nets, such as in [56][Section 4.2], arbitrary order-
ings of transitions result in the same marking, as long as
these orderings can be executed, making it possible to
calculate sets that do not conform to the lemma.

In what follows, we will use the term dependencies
to refer to both an accordance relation (in connection to
an enabled transition), and a necessary enabling set (in
connection to disabled transitions).

3.2 Stubborn Set Calculation

We now turn our attention to calculation of stubborn
sets, and we give two algorithms to this end.

Algorithm 1 from [14] implements the closure method
from [51, Sec. 7.4]. It builds a stubborn set incremen-
tally by making sure that each new transition added to
the set fulfils the sufficient stubborn set conditions of

Lemma 1. Algorithm 1 only makes use of DNA, so that
it builds a strong stubborn set; Line 11 could also choose
(nondeterministically) to add the transitions from DNBt
instead of DNAt. (Provided that it ends with at least
one DNAt.)

Example 2. Suppose Figure 2 is a partial run of Algo-
rithm 1 on state s, and transition t3 does not accord with
some transition t ∈ Ts. The algorithm will proceed with
processing t and add all transitions that do-not-accord,
including t3, to the work set. Since t3 is disabled in state
s, we add the necessary enabling set for t3 to the work
set. This could for instance be {t2}, which is then added
to the work set. Again, the transition is disabled and a
necessary enabling set for t2 is added, for instance, {t1}.
Since t1 is enabled in s, and has no other dependent tran-
sitions in this example, the algorithm finishes. Note that
in this example, t1 now should be part of the stubborn
set.

In Section 4.3, we extend the standard closure algo-
rithm with heuristic selection, based on the guard-based
approach presented there.

Algorithm 2 implements the deletion algorithm [56].
It starts with an initial set that is trivially stubborn:
Ts = Tn ∪ Tk = T . Hence, all enabled transitions are
key transitions: Tk = en(s) (see Lines 2–3). Then it
recursively deletes implied transitions starting from all
enabled transitions. Implied transitions are those transi-
tions which no longer satisfy Lemma 1. To delete those
transitions, the algorithm does a reverse, or backward,
search of the (asymmetric) enabling and accordance rela-
tions (a version of the algorithm which makes these rela-
tions explicit via an and/or graph was presented in [47]).
The postcondition of the Delete function adheres to the
the conditions of Lemma 1:

1. Tk ⊆ en(s) and non-empty,
2. for t ∈ Tk , DNAt ⊆ Tk ∪ Tn ,
3. for t ∈ Tn ∩ en(s), DNBt ⊆ Tk ∪ Tn ,
4. and for t ∈ Ts\en(s), there is someNt ∈ find nes(t, s)

such that Nt ⊆ Tk ∪ Tn .

1 function stubbornclosure(s)
2 Twork = {t} for some t ∈ en(s)
3 Ts = ∅
4 while Twork 6= ∅ do
5 Twork = Twork \ {t}, Ts = Ts ∪ {t} for some

t ∈ Twork

6 if t ∈ en(s) then
7 Twork = Twork ∪DNAt \ Ts
8 else
9 Twork = Twork ∪N \ Ts for some

N ∈ find nes(t, s)
10 return Ts
Algorithm 1: The closure algorithm for finding
stubborn sets

6 Alfons Laarman et al.: Guard-based Partial-Order Reduction

1 function stubborndeletion(s)
2 Tk := en(s)
3 Tn := T
4 forall the t ∈ en(s) do
5 (T ′k , T ′n) := Delete(s, t, Tk , Tn)
6 if T ′k 6= ∅ then
7 (Tk , Tn) := (T ′k , T ′n)

8 return Tn ∪ Tk
9 function Delete(s, t, Tk , Tn)

10 Tk := Tk \ {t}
11 Tn := Tn \ {t}
12 forall the t′ ∈ DNAt ∩ Tk do
13 Tk := Tk \ {t′}
14 if t′ /∈ Tn then
15 (Tk , Tn) := Delete(s, t′, Tk , Tn)

16 forall the t′ ∈ DNB−1
t ∩ Tn ∩ en(s) do

17 Tn := Tn \ {t′}
18 if t′ /∈ Tk then
19 (Tk , Tn) := Delete(s, t′, Tk , Tn)

20 forall the t′ ∈ Tn \ en(s) such that
∃N ∈ find nes(t′, s) : t ∈ N do

21 if ∀N ′∈find nes(t′, s) : N ′ 6⊆ (Tk ∪ Tn) then
22 (Tk , Tn) := Delete(s, t′, Tk , Tn)

23 return (Tk , Tn)

Algorithm 2: The deletion algorithm for finding
stubborn sets

This is easily verified by examining the conditions under
which Delete is called; Once t has been removed, the
enabled transitions in DNAt are removed from Tk (note
that by its symmetry, we have DNA =DNA−1). If t ∈
DNBt′ for some enabled t′, and t′ /∈ Tk , then t′ no longer
satisfies the conditions of Lemma 1, and must be deleted.
If t ∈ Nt′ of some disabled t′, and no other necessary
enabled set N ′ of t′ is a subset of the stubborn set, then t′

must be deleted as well. This cascade will continue while
the conditions 1 and 2 are violated. If deletion causes Tk
to become empty, deletion is cancelled, and the previous
stubborn set reverted at Line 7, because condition 3
could not be satisfied, which gives the correctness of the
algorithm.

The deletion algorithm has been mostly of theoretical
interest, and it has some attractive theoretical proper-
ties. In [52], it was proven that when restricted to strong
stubborn sets, no proper subset of the stubborn set re-
turned by Algorithm 2 can be (strongly) stubborn, if the
relations DNA and necessary enabling sets are fixed. A
similar condition holds for Algorithm 2, which we prove
here.

Lemma 2. The set Ts = Tn ∪ Tk maintained by Algo-
rithm 2 is maximal among sets that contain the same
enabled transitions and satisfy Lemma 1.

Proof. The invariant holds in the beginning. Delete re-
moves only transitions that directly violate the conditions
in Lemma 1. �

Theorem 1. Let Ts be returned by Algorithm 2. There
is no T ′s ∩ en(s) ⊂ Ts ∩ en(s), such that T ′s satisfies the
conditions of Lemma 1.

Proof. Assume that T ′s ∩ en(s) ⊂ Ts ∩ en(s). The algo-
rithm iterates over the enabled transitions on Line 4. Let
t ∈ en(s) ∩ Ts and t /∈ T ′s ∩ en(s), and assume that it
is the first such transition which the iteration on Line 4
passes to Delete. However, just before t is passed, the set
Tn ∪ Tk maintained by the algorithm must be a superset
of T ′s , by Lemma 2. Removal of t is not possible without
violating condition 3 of Lemma 1, as otherwise t would
not be in Ts. Therefore T ′s cannot satisfy Lemma 1. �

The previous theorem is our main motivation of including
Algorithm 2 as a point of comparison, as we want to
show that the guard-based heuristic approach is a good
compromise between fast but inaccurate, and powerful
but slow reduction.

4 Computing Necessary Enabling Sets for Guards

The current section investigates how necessary enabling
sets can be computed purely based on guards, without
reference to program counters. We proceed by introduc-
ing necessary enabling on guards, we then show how this
relation can be improved by using disabling sets, and
also introduce a heuristic for efficient stubborn set calcu-
lation. Finally, it is shown how the Pins interface can be
extended to support guard-based partial-order reduction
by exporting guards, test sets, and the relations from
the previous section. By making some relations optional,
and overestimating them using e.g. the test sets, the bur-
den of implementation in the language frontends remains
proportional to the increase in reduction power.

4.1 Guard-based Necessary Enabling Sets

We refer to all guards in the state space MT = (ST , s0, ∆)
as: GT :=

⋃
t∈T Gt.

Definition 10 (necessary enabling set for guards).
Let g ∈ GT be a guard that is disabled in some state
s ∈ ST , i.e. ¬g(s). A set of transitions Ng is a necessary
enabling set for g in s, if for all states s′ with some
sequence s t1,...,tn−−−−−→ s′ and g(s′), for at least one transition
ti (1 ≤ i ≤ n) we have ti ∈ Ng.

Given Ng, a concrete necessary enabling set on tran-
sitions in the sense of Definition 9 can be retrieved as
follows (notice the non-determinism):

find nes(t, s) ∈ {Ng | g ∈ Gt ∧ ¬g(s)}
Proof. Let t be a transition that is disabled in state
s ∈ ST , t /∈ en(s). Let there be a path where t becomes
enabled, s t1,...,tn−−−−−→ s′ t−→ , On this path, all of t’s disabled
guards, g ∈ Gt∧¬g(s), need to be enabled, for t to become
enabled (recall that Gt is a conjunction). Therefore, any
Ng is a Nt. �

Alfons Laarman et al.: Guard-based Partial-Order Reduction 7

Example 3. Let ch be the variable for a rendez-vous chan-
nel in a Promela model. A channel read can be modeled
as a Promela statement ch? in some process P1. A chan-
nel write can be modeled as a Promela statement ch! in
some process P2. As the statements synchronise, they can
be implemented as a single transition, guarded by process
counters corresponding to the location of the statements
in their processes, e.g.: P1.pc = 1 and P2.pc = 10. The
set of all transitions that assign P1.pc := 1, is a valid
necessary enabling set for this transition. So is the set of
all transitions that assign P2.pc := 10.

Instead of computing the necessary enabling set on-
the-fly, we statically assign each guard a necessary en-
abling set by default. Only transitions that write to state
vector variables used by this guard need to be consid-
ered (as in [37]):

Nmin
g := {t ∈ T | Ts(g) ∩Ws(t) 6= ∅}

4.2 Necessary Disabling Sets

Consider the computation of a stubborn set Ts in state s
along the lines of Algorithm 1. If a disabled t gets in the
stubborn set, a necessary enabling set is required. This
typically contains a predecessor of t in the control flow.
When that one is not yet enabled in s, its predecessor is
added as well, until we find a transition enabled in s. So
a whole path of transitions between s and t ends up in
the stubborn set.

Example 4. Assume a system with several parallel pro-
cesses, two of which are P1 and P2, shown in Figure 3
with DNA(t1, t7) and DNA(t6, t7). We use Algorithm 1
to construct the set, starting from t = t1. We have
{t1, t7} ⊆ en(s0), and both end up in the stubborn set,
since they do-not-accord and may be co-enabled. Then
t7 in turn adds t6, which is disabled. Now working back-
wards, the enabling set for t6 is t5, for t5 it is t4, etc,
eventually resulting in the stubborn set {t1, . . . , t7}. If
one of those transitions, say t3 has, not only t2 but also
some t∗ (not shown) in the same necessary enabling set,
then also t∗ gets added to the set; the reduction is made
worse if t∗ is enabled.

How can this unnecessary growth of stubborn set be
avoided? The crucial insight is that to enable a disabled
transition t, it is necessary to disable any enabled transi-
tion t′ which cannot be co-enabled with t. Quite likely,
t′ could be a successor of the starting point s, leading to
a smaller stubborn set.

Example 5. Consider again the situation after adding
{t1, t7, t6} to Ts, in the previous example. Note that t1
and t6 cannot be co-enabled, and t1 is enabled in s0. So
it must be disabled in order to enable t6. Note that t1
is disabled by itself. Hence t1 is a necessary enabling
set of t6, and the algorithm can directly terminate with

P1 P2

t1

t2· · ·t5

t6

t7

t8

D,MC

Figure 3. Two process example

the stubborn set {t1, t7, t6}, avoiding adding t∗ into the
stubborn set. Clearly, using disabling information saves
time and can lead to better reduction.

Definition 11 (may be co-enabled for guards). The
may be co-enabled relation for guards, MC g ⊆ GT × GT
is a symmetric, reflexive relation. Two guards g, g′ ∈ GT
may be co-enabled if there exists a state s ∈ ST where
they both evaluate to true: ∃s ∈ ST : g(s) ∧ g′(s) ⇒
(g, g′) ∈ MC g.

Example 6. Two guards that can never be co-enabled
are: g1 := v = 0 and g2 := v ≥ 5. In e.g. Promela,
these guards could implement the channel empty and full
expressions, where the variable v holds the number of
buffered messages. In e.g. mCRL2, the conditions of a
summand can be implemented as guards.

Note that it is allowed to over-approximate the maybe
co-enabled relation. Typically, transitions within a se-
quential system component can never be enabled at the
same time. They never interfere with each other, even
though their test and write sets share at least the program
counter.

Definition 12 (necessary disabling set for guards).
Let g ∈ GT be a guard that is enabled in some state
s ∈ ST , i.e. g(s). A set of transitions N g is a necessary
disabling set for g in s, if for all states s′ with some se-
quence s t1,...,tn−−−−−→ s′ and ¬g(s′), for at least one transition
ti (1 ≤ i ≤ n) we have ti ∈ N g.

The following disabling set can be assigned to each
guard. Similar to enabling sets, only transitions that
change the state indices used by g are considered.

Nmin

g := {t ∈ T | Ts(g) ∩Ws(t) 6= ∅}

Using disabling sets, we can find an enabling set for the
current state s:

Theorem 2. If N g is a necessary disabling set for guard
g in state s with g(s), and if g′ is a guard that may not
be co-enabled with g, i.e. (g, g′) /∈ MC g, then N g is also
a necessary enabling set for guard g′ in state s.

8 Alfons Laarman et al.: Guard-based Partial-Order Reduction

Proof. Guard g′ is disabled in state s, since g(s) holds
and g′ cannot be co-enabled with g. In any state reachable
from s, g′ cannot be enabled as long as g holds. Thus,
to make g′ true, some transition from the disabling set
of g must be applied. Hence, a disabling set for g is an
enabling set for g′. �

Given Ng and N g, we can find a necessary enabling
set for a particular transition t = (G, a) ∈ T in state
s, by selecting one of its disabled guards. Subsequently,
we can choose between its necessary enabling set, or the
necessary disabling set of any guard that cannot be co-
enabled with it. This spans the search space of our new
find nes algorithm, which is called by Algorithm 1:

find nes(t, s) ∈ {Ng | g ∈ Gt ∧ ¬g(s)} ∪ (1)⋃
g′∈GT

{N g′ | g′(s) ∧ g′ 6∈ MC g ∧ g ∈ Gt}

4.3 Heuristic Selection for Stubborn Sets

Even though the stubborn set conditions of Lemma 1
are stronger than the dynamic stubborn set, it still al-
lows many different sets to be computed, as both the
choice of an initial transition t at Line 2 and the find nes
function in Algorithm 1 are non-deterministic. It is well
known that the resulting reductions depend strongly on a
smart choice of the necessary enabling set [52]. A known
approach to resolve this problem is to run an SCC al-
gorithm on the complete search space for each enabled
transition t [51]. The complexity of this solution can be
somewhat reduced by choosing a ‘scapegoat’ for t [56]. In
Algorithm 2, the choice of order in which enabled transi-
tions are taken out from the set is still nondeterministic,
but it completely avoids the nondeterminism of find nes .
However, Algorithm 2 is potentially too expensive to
be of practical use unless the added reduction is clearly
superior.

We propose here a practical solution that avoids the
complexities of both the scapegoat approach, and the
deletion algorithm. Using a heuristic, we explore all pos-
sible scapegoats, while limiting the search by guiding it
towards a local optimum. (This makes the algorithm de-
terministic, which has other benefits, cf. Section 8). Even
though choosing stubborn sets as small as possible (in
terms of number of transitions) is not a perfect solution,
it is an often-effective heuristics for large partial-order
reductions [14,33]. To this end, we define a heuristic
function h that associates some cost to adding a new
transition to the stubborn set. Here enabled transitions
weigh more than disabled transitions. Transitions that
do not lead to additional work (already selected or going
to be processed) do not contribute to the cost function

at all. Below, Ts and Twork refer to Algorithm 1.

h(N , s) =
∑
t∈N

cost(t, s), where

cost(t, s) =

1 if t /∈ en(s) ∧ t /∈ Ts ∪ Twork

n if t ∈ en(s) ∧ t /∈ Ts ∪ Twork

0 otherwise

Here n is the maximum number of outgoing transitions
(degree) in any state, n = max

s∈S
(|en(s)|), but it can be

over-approximated (for instance by |T |).
We restrict the search to the cheapest necessary enabling
sets:

find nes ′(t, s)∈{N ∈ find nes(t, s) |
∀N ′∈ find nes(t, s) : h(N, s) ≤ h(N ′, s)}

4.4 A Pins Extension to Support Guard-based POR

In model checking, the state space graph of Definition 4
is constructed only implicitly by iteratively computing
successor states. A generic next-state interface hides the
details of the specification language, but exposes some
internal structure to enable efficient state space storage
or state space reduction.

The Partitioned Interface for the Next-State function,
or Pins [3], provides such a mechanism. The interface
assumes that the set of states S consists of vectors of
fixed length N , and transitions are partitioned disjunc-
tively in M partition groups T . Pins also supports K
state predicates L for model checking. In order to exploit
locality in symbolic reachability, state space storage, and
incremental algorithms, Pins exposes a dependency ma-
trix DM, relating transition groups to indices of the state
vector. This yields orders of magnitude improvement in
speed and compression [3,2]. The following functions of
Pins are implemented by the language front-end and
used by the exploration algorithms:
– InitState: S
– NextStates: S → 2T×S and
– StateLabel: S × L→ B
– DM: BM×N

Extensions to Pins. POR works as a state space trans-
former, and therefore can be implemented as a Pins2Pins
wrapper (cf. Figure 1), both using and providing the in-
terface. This POR layer provides a new NextStates(s)
function, which returns a subset of enabled transitions,
namely: stubborn(s) ∩ en(s). It forwards the other Pins
functions. To support the analysis for guard-based partial-
order reduction in the POR layer, we introduced four
essential extensions to Pins:
– StateLabel additionally exports guards: GT ⊆ L,
– a K ×N label dependency matrix is added for Ts,
– DM is split into a read and a write matrix representing

Rs and Ws,
– an M ×M do-not-accord matrix is added.

Alfons Laarman et al.: Guard-based Partial-Order Reduction 9

Mainly, the language front-end must do some static anal-
ysis to estimate the do-not-accord relation on transitions
based on the criteria listed below Definition 8 While Cri-
terion 1 allows the POR layer to estimate the relation
without help from the front-end (using Rs and Ws), this
will probably lead to poor reductions.

Tailored Necessary Enabling/Disabling Sets. To support
necessary disabling sets, we also extend the Pins inter-
face with an optional maybe co-enabled matrix. Without
this matrix, the POR layer can rely solely on necessary
enabling sets.

Both Nmin and Nmin
can be derived via the refined

Pins interface (using Ts and Ws). In order to obtain
the maximal reduction performance, we extend the Pins
interface with two more optional matrices:

– a K ×M necessary enabling set N pins
g , and

– a K ×M necessary disabling set N pins

g .

The language front-end can now provide more fine-grained
dependencies by inspecting the syntax as in Example 3.

The POR layer actually uses the following intersec-
tions:

Ng := Nmin
g ∩N pins

g

N g := Nmin

g ∩N pins

g

A simple insight shows that we can compute both N pins
g

andN pins

g using one algorithm. Namely, for a transition to
be necessarily disabling for a guard g, means exactly the
same as for it to be necessarily enabling for the inverse:
¬g. Or by example: to disable the guard pc = 1, is the
same as to enable pc 6= 1.

Weak Stubborn Sets. To facilitate the use of weak stub-
born sets, the left-accordance relation is required in the
POR layer. This matrix can also be derived from other
matrices. From the explanation in Section 3.1, the fol-
lowing follows:

DNB ⊆(DNA ∪ {(t, t′) | ∃g ∈ Gt : t′ ∈ Ng})\M,

where M is the transition must-disable set :

M⊆ {(t, t′) | ∀s, s′ ∈ S : s
t−→ s′∧t′ ∈ en(s)∧t′ 6∈ en(s′)}

So only an additional M matrix is required for weak
sets. We finally also allow an additional (optional) do-not-
left-accords matrix to be exported, as it could be that
the combined static analysis yields a better estimation:

– an M ×M must disable matrix M, or
– an M ×M do-not-left-accord matrix DNB.

In the following section, we demonstrate how these
relations can also be exploited to implement LTL model
checking with POR in a language-independent fashion.

5 Partial-Order Reduction for On-The-Fly LTL
Checking

A more or less standard specification logic for liveness
properties is Linear Temporal Logic (LTL) [41]. An ex-
ample LTL property is �♦p, expressing that from any
state in an execution (� = always), eventually (♦) a state
s can be reached s.t. p(s) holds, where p is a predicate
over a state s ∈ ST , similar to our definition of guards
in Definition 2.

In the automata-theoretic approach, an LTL property
ϕ is transformed into a Büchi automaton Bϕ whose ω-
regular language L(Bϕ) represents the set of all infinite
traces the system should adhere to. Bϕ is an automaton
(SB, Σ,F) with additionally a set of transition labels Σ,
made up of the predicates, and accepting states: F ⊆ SB.
Its language is formed by all infinite paths visiting an
accepting state infinitely often. Since Bϕ is finite, a lasso-
formed trace exists, with an accepting state on the cycle.
The system MT is likewise interpreted as a set of infinite
traces representing its possible executions: L(MT). The
model checking problem is now reduced to a language
inclusion problem: L(MT) ⊆ L(Bϕ).

Since the number of cycles in MT is exponential in
its size, it is more efficient to invert the problem and
look for error traces. The error traces are captured by
the negation of the property: ¬ϕ. The new problem is a
language intersection and emptiness problem: L(MT) ∩
L(B¬ϕ) = ∅. The intersection can be solved by computing
the synchronous cross product MT ⊗ B¬ϕ The states of
SMT ⊗B¬ϕ are formed by tuples (s, s′) with s ∈ SMT and
s′ ∈ S¬ϕ, with (s, s′) ∈ F iff s′ ∈ F¬ϕ. The transitions in
TMT ⊗B¬ϕ are formed by synchronising the propositions
Σ on the states s ∈ SMT . For an exact definition of
TMT ⊗B¬ϕ , we refer to [54]. The construction of the cross
product can be done on-the-fly, without computing (and
storing!) the full state space MT . Therefore, the NDFS [6]
algorithm is often used to find accepting cycles (= error
traces) as it can do so on-the-fly as well. In the absence
of accepting cycles, the original property holds.

To combine LTL model checking with POR, so that
all behaviours characterized by an LTL formula are pre-
served, the reduction function needs to fulfil some ad-
ditional constraints, which we discuss here. For more
comprehensive treatment of LTL and stubborn sets, we
refer the reader to [51].

First, it should be noted that LTL needs to be slightly
restricted, in order to make reduction possible. In the
general LTL, the next-state operator © (next-state) is
used, for indicating that some subformula holds in the
state immediately following the current state. This makes
partial-order reduction problematic. Consider the formula
©¬p, that should hold in the current state. Any two
transitions, one of which changes the truth value of p
and one which does not, have the possibility of leading
to a violation of this formula, therefore, the reduction
would have to include both kinds of transitions. But

10 Alfons Laarman et al.: Guard-based Partial-Order Reduction

NDFS emptiness check

LTL crossproduct

Partial order reduction

Language module

system specification ϕ

MT

MR
T

MR
T ⊗ B¬ϕ

Σ,G,Ts
MCg,N pins

g

Tv

@a ∈ stubborn(s)
: s ∈ stack

Pins

Pins

Pins

Figure 4. Pins w. LTL POR

there are no other kinds of transitions in the system.
Therefore, we have to assume that © is not used as an
operator. Repetition of the same propositional values in
an execution is referred to as stuttering, and LTL without
the next-state operator can express only the properties
that are stuttering insensitive, i.e., invariant under finite
stuttering.

Second, even without©, the propositional statements
in an LTL formula cannot in general appear in arbitrary
order. For example, formulas such as �(p⇒ (¬q ∧ ♦q))
are sensitive to whether p or q hold in a given state. Even
if two transitions would otherwise accord, the omitted
states may be important, if the values of p and q change in
between. Consider two transitions t1 and t2, that accord
strongly. Assume that s t1−→ s1

t2−→ s′ and s t2−→ s2
t1−→ s′.

p holds only at s, and q holds only at s2 . On the path
ss1s

′, the formula is not satisfied, but on the path ss2s
′

it does hold. Transitions that change the truth-value of
some proposition that appears in ϕ, are called visible
transitions, and denoted Tv. Transitions that are not vis-
ible are invisible. If the order between visible transitions
is not preserved, there is risk that some paths are missed.
A visibility proviso is needed to ensure that the traces
included in B¬ϕ are not pruned from MT when reducing.

Third, cyclical executions of transitions correspond
to infinite executions, and all (relevant) such executions
need to be preserved. For instance, consider the property
♦p, and a system with two states: In the first, p does not
hold and in the second, it holds. t1 is a self-loop in both
states, and t2 leads from the first to the second. t1 and
t2 accord strongly, but omitting t2 misses the execution
where ♦p is satisfied. This is known as the ignoring
problem, where some essential transition is postponed
infinitely. An ignoring proviso is needed to ensure that
important transitions are included in the reduced state
space.

Fourth, even if LTL properties are assumed to be in-
sensitive to finite stuttering, infinite stuttering must still

Table 1. POR provisos for the LTL model checking of MT with a
property ϕ

visibility V Ts ∩ en(s) ∩ Tv = ∅, or Tv ⊆ Ts
invisibility I en(s) \ Tv 6= ∅ ⇒ T ks ∩ (en(s) \ Tv) 6= ∅
visibility+
invisibility

C2 Ts ∩ en(s) ∩ Tv = ∅, or Ts = en(s)

ignoring C3 @t ∈ Ts : closing a cycle, or Ts = en(s)

ignoring C3’ @t ∈ Ts : closing a cycle, or Tv ⊆ en(s)

be preserved. We can consider the same two-state system
as before, but with the property �¬p. If we ignore t1 -
an invisible, and thus seemingly non-essential, transition
in the first state, no execution in the reduced system
satisfies �¬p. For this we need an invisibility proviso.

Classically, many partial-order reduction methods
combine visibility and invisibility provisos, but strictly
speaking this is not necessary. Table 1 lists some of the
conditions found in the literature that ensure LTL prop-
erties are preserved. With stubborn sets, we can use C3
to resolve ignoring, and the combination of I and V for
visibility. The condition C2 is a stronger alternative to
using the combination of I and V. Please note that the
set T ks mentioned in proviso I refers to the set of key
transitions in Ts.

We state two ignoring provisos, C3 and C3’, both
use the ‘closing of a cycle’ as premise. This proposition
is purposefully a bit vague, as it is up to the state space
exploration algorithm to identify at least one transition
per infinite path in the reduced states space. The simplest
way to do this, is by running a DFS algorithm and mark
all transitions that end in a state on the current search
stack as ‘cycle closing’. To find the minimum number of
transitions satisfying the required condition, is obviously
a hard problem as there can be exponentially many cycles
in the reduced states space. However, alternative algo-
rithms exist that can find good estimates for practical
problems [11].

Stubborn sets can use the weaker C3’ proviso, poten-
tially yielding better reductions. All these different pro-
visos, including slight variants not mentioned here, have
been extensively discussed in [49,53,51], but have never
been evaluated in practice on real-world variable/transition
systems. Section 7 provides an evaluation of the perfor-
mance of these different provisos.

These conditions can easily be integrated in Algo-
rithm 1. The integration requires Tv and information
whether the target state of a given transition is in the
DFS stack. The reduced state space MR

T is constructed
on-the-fly, while the LTL cross product and emptiness
check algorithm run on top of the reduced state space [40].
Figure 4 shows the Pins stack with POR and LTL as
Pins2Pins wrappers.

We extend the NextStates function of Pins with
a boolean, that can be set by the caller to pass the
information needed for C3. For C2, or V and I , we

Alfons Laarman et al.: Guard-based Partial-Order Reduction 11

extend Pins with Tv, to be set by the LTL wrapper
based on the predicates Σ in ϕ:

T min
v := {t ∈ T |Ws(t) ∩

⋃
p∈Σ

Ts(p) 6= ∅}

However, this is a coarse over-approximation, which we
can improve by inputting ϕ to the language module, so
it can export Σ as state labels, i.e. Σ ⊆ G, and thereby
obtain N/N for it:

T nes
v :=

⋃
p∈Σ
Np ∪N p

To summarise, we can combine guard-based partial-
order reduction with on-the-fly LTL model checking with
limited extensions to Pins: a modified NextStates
function and a visibility matrix Tv : T → B. For better
reduction, the language module needs only to extend the
exported state labels from G to G ∪Σ and calculate the
MC (and N pins/ N pins

) for these labels as well.

6 Implementation

The closure algorithm has been implemented using a
form of Beam search [36] to facilitate the heuristic search.
Traditional Beam search performs BFS with an fixed-
sized, ordered work queue to prioritize successors and
discard paths that are less promising according to the
heuristic.For the closure algorithm (see Algorithm 3),
instead, we use one search context for each enabled state
c (Lines 2–4). The search contexts represent independent
closure searches, each with their own work set (T cwork)
and visited set (T cs).

The search contexts are scheduled sequentially always
running the one which found the fewest enabled tran-
sitions yet (see Line 6). The (Beam) search continuous
until the context with the minimum number of enabled
transitions has finished (the closure algorithm), then the
stubborn set is returned (Line 8). All contexts search dif-
ferent transition dependency spaces, because the heuristic
selection criterion dependents on its current visited set
(see Line 13, which uses the cost function from Section 4.3
implicitly passing Ts = T cs and Twork = T cwork).

Note that all nondeterminism is resolved: the nonde-
terminism of selecting an initial state, by starting Beam
searches from all initial transitions, and the nondeter-
minism of choosing a necessary enabling set for disabled
transitions via the heuristic selection criterion.

The advantages of this approach is that the search
tries to find local optima starting from all enabled tran-
sitions and may terminate early when a best result is
found. The worst-case complexity is c2|T |2, where c is
a reasonably small constant bounded by the size of the
transition’s test set, which is limited due to the locality of
transitions in a parallel system (c2 represents the depen-
dencies that have to be considered per transition, this is

explained in detail in [49]). The factor |T | arises because
a search may consider all transitions, and the other |T |
is caused by the different search contexts. Because in
practice the number of enabled transitions is much lower
than |T |, we can expect the complexity to lie closer to
to the SCC algorithm presented in [49].

The disadvantage of our approach is that the heuris-
tic has to be maintained independently in each search
context. We partly solved this problem by incrementally
updating the initial cost values, which is possible due
to the relatively small set of enabled transitions at each
state. Still the costs have to be copied to – and main-
tained at – each search context which becomes active.
We suspect it is further possible to update costs more
lazily, however we did not implement this.

The deletion algorithm was implemented without the
explicit recursion shown in Algorithm 2. Also several opti-
mizations were added to crucially improve the algorithm’s
performance:

1. If a (backward) search from a transition t fails, and
the stubborn set has to be reverted at Line 7, t is
marked as a fail transition.

2. If a fail transition is encountered, the search is termi-
nated early at the beginning of the Delete function.

3. The same is done when the set of key transitions Tk
becomes empty at Line 10 or 13.

4. The fulfilment of condition 4 in Section 3.2 is compli-
cated, as necessary enabling set N has to be found
from which the deleted t is a part of (see Line 20),
and subsequently that no disabled transitions t′ de-
pending on N end up without any stubborn necessary
enabling set (see Line 21). That is both a backward
and a forward search. The additional forward search
can however be eliminated by counting. Each Ng, i.e.
each guard g, gets a counter of how many transitions
are removed from it. Deleted transitions in Ng incre-
ment the counter. The first transition that increments

1 function stubbornheur (s)
2 forall the c ∈ en(s) do
3 T cwork := {c}
4 T cs := ∅
5 while true do
6 Ts := T cs , Twork := T cwork for some c ∈ en(s)

such that |(T cwork ∪T cs)∩ en(s)| is minimal
7 if Twork = ∅ then
8 return Ts
9 Twork := Twork \ {t}, Ts := Ts ∪ {t} for some

t ∈ Twork

10 if t ∈ en(s) then
11 Twork := Twork ∪DNAt \ Ts
12 else
13 Twork := Twork ∪N \ Ts for some

N ∈ find nes(t, s)

Algorithm 3: The Beam search algorithm for
finding stubborn sets with the heuristic function

12 Alfons Laarman et al.: Guard-based Partial-Order Reduction

it, i.e. makes it incomplete, has to decrement a sec-
ond counter on those transitions t′ that rely on it.
This counter is initialized to the number of necessary
enabling sets that t′ has. If it reaches zero (and the
transition is disabled), t′ has to be deleted as well.

These reflect all optimizations known to us.
The deletion algorithm also has a complexity of c2|T |2

according to [49]. Instead of finding only local optima, it
guarantees a subset minimal result (see Section 3.2). We
suspect therefore that it is less likely to terminate early,
unless a stubborn set of size one is found early on.

Note that subset minimal sets are not necessarily the
smallest stubborn set possible at a state, even though
the converse holds. There could exist a partly overlap-
ping set that is smaller and still satisfies the stubborn
set constraints as set forth in Section 3. Therefore, the
deletion algorithm can be further extended to yield al-
most smallest stubborn sets by combining it with the
incomplete minimization algortihm [55]. However, this
increase the complexity with another factor |T |, so we
do not implement it here.

7 Experimental Evaluation

7.1 Experimental Setup

The LTSmin toolset implements Algorithm 1 as a language-
independent Pins layer since version 1.6. We implemented
the deletion algorithm as well to evaluate the performance
of the heuristic better.

We experimented with BEEM and Promela mod-
els. To this end, first the DiVinE front-end of LTSmin
was extended with the new Pins features in order to
export the necessary static information. In particular, it
supports guards, R/W-dependency matrices, the do-not-
accord matrix, the co-enabled matrix, and disabling- and
enabling sets. Later the Promela front-end SpinS [2]
was extended, with relatively little effort.

We performed experiments and indicate performance
measurements with LTSmin 2.01 and Spin version 6.2.12.
All experiments ran on a dual Intel E5335 CPU with
24GB RAM memory, restricted to use only one processor,
8GB of memory and 3 hours of runtime. None of the
models exceeded these bounds.

The first goal of this evaluation is to obtain a better
understanding of the performance of the heuristic selec-
tion criterion. In the prequel work [29], we showed that
guard-based partial-order reduction could compete with
state of the art model checkers such as Spin, despite its
language independence. The obtained reductions were
shown to be consistently better than those of the ample-
set approach in Spin. The runtimes of Spin were however
several times faster. A symptom which we attributed to

1 http://fmt.cs.utwente.nl/tools/ltsmin/
2 http://spinroot.com

the more elaborate heuristic selection algorithm and the
many guards and transitions which our models included.

Previously, we did however not succeed completely to
isolate the performance of the necessary disabling sets,
nor did we have a reference point for the evaluation of
the heuristic selection criterion. To tackle the latter, the
following section first details the implementation and
complexity of both stubborn-set calculation algorithms.
It turns out that both algorithms have the same worst
case complexity, but the heuristic closure algorithm has
a better potential to scale better. This is then verified
with experiments in Section 7.2.

Since our implementation has been improved some-
what, we also include a new comparison of the guard-
based stubborn method with the ample-set method, both
theoretically and experimentally. For the theoretical com-
parison the same BEEM models were used as in [12]
to establish the best possible reduction with ample sets.
For the experimental comparison, we used a rich set of
Promela models3, which were also run in Spin with
partial-order reduction. While POR is only useful for
models which cannot be explored fully, we focus here on
smaller models in order to be able to study the obtained
reductions. In [2], the authors reported how the same
method was used to fully explore the GARP model [24],
which previously was only analyzed with incomplete ver-
ification methods [24].

In the following, when we discuss necessary enabling
sets, we mean the enabling sets extended with the nec-
essary disabling sets as explained in Section 4.2, unless
stated otherwise. In Section 7.3, we investigate the impact
of the necessary disabling set method.

7.2 Algorithms for Stubborn-Set Calculation

First, we compare the two algorithms for stubborn set
calculation, to establish the effectiveness of the heuristic
selection (Section 4.3) criterion as implemented with
the Beam search (Section 6). We focus on a subset of
Promela models that show interesting reductions, i.e.
excluding those without reduction and toy examples with
obscene reductions.

To investigate the reductions, we currently only look
at the reduction in the number of states. For perfor-
mance, we choose the metric of number of states per
second. This facilitates some insights in the performance
of the algorithms despite their difference in reductions.
Furthermore, the number of new states is the major
work unit here, as it corresponds to the number of calls
of the stubborn-set algorithm. Other metrics of the same
models, such as absolute runtimes, are shown in the ex-
perimental comparison with other tools, in a subsequent
sections.

Table 2 shows the obtained results in the second and
third columns. The heuristic selection (‘Beam heur.’)

3 http://www.albertolluch.com/research/promelamodels

http://fmt.cs.utwente.nl/tools/ltsmin/
http://spinroot.com
http://www.albertolluch.com/research/promelamodels

Alfons Laarman et al.: Guard-based Partial-Order Reduction 13

Table 2. Reductions and speed of the deletion algorithm and the closure algorithm with heuristic selection, both implementing the strong
stubborn set definition.

no POR Deletion Beam heur. Closure heur. Beam no heur. Closure

|S| |T | ∆|S| |S|/sec ∆|S| |S|/sec ∆|S| |S|/sec ∆|S| |S|/sec ∆|S| |S|/sec

brp.prm 3.280.269 7.058.556 34,8% 91.816 28,0% 254.404 28,9% 224.147 36,5% 198.827 40,0% 244.647

garp 48.363.145 247.135.869 3,8% 30.922 3,6% 59.965 49,5% 99.594 8,4% 28.970 72,8% 37.065

iprotocol0 9.798.465 45.932.747 6,1% 23.062 5,7% 70.706 36,8% 100.268 12,5% 26.255 80,2% 27.428

iprotocol2 14.309.427 48.024.048 17,6% 73.194 16,1% 189.562 55,2% 218.248 36,3% 66.796 92,7% 117.433

p117.pml 354 828 41,8% n/a 46,3% n/a 41,5% n/a 93,2% n/a 100,0% n/a

peterson4 12.645.068 47.576.805 3,0% 70.698 2,9% 212.681 50,8% 247.946 2,9% 156.367 60,1% 186.736

philo.pml 1.640.881 16.091.905 4,9% 29.171 7,9% 31.683 55,4% 81.263 43,6% 7.668 89,8% 37.726

SMALL1 36.970 163.058 17,8% n/a 17,8% n/a 60,4% n/a 17,8% n/a 80,5% n/a

smcs 5.066 19.470 6,6% n/a 7,6% n/a 31,6% n/a 56,0% 3.594 96,8% 7.908

snoopy 81.013 273.781 9,2% 12.034 15,2% 21.964 37,0% 46.881 10,3% 11.599 66,0% 30.400

X.509.prm 9.028 35.999 7,6% n/a 12,7% n/a 76,4% n/a 94,9% 12.604 100,0% n/a

Table 3. Branching factors of the state spaces generated by the different algorithms with and without weak stubborn sets and necessary
disabling sets. The different algorithm variants are encoded as follows: B = Beam search, c = Closure algorithm, +h/-h = with/without
heuristic necessary enabling set selection.

No Strong Weak No NDS

POR deletion B+h c+h B-h c-h del heur del heur

brp.prm 2,15 1,15 1,16 1,15 1,28 1,40 1,17 1,16 1,15 1,16

garp 5,11 2,10 2,11 2,79 2,01 3,12 2,14 2,04 2,10 2,12

iprotocol0 4,69 1,84 1,83 2,42 1,96 2,85 1,91 1,82 1,84 1,96

iprotocol2 3,36 1,94 1,99 2,19 1,96 2,48 1,90 1,84 1,94 1,98

p117.pml 2,34 1,22 1,19 1,22 2,12 2,13 1,22 1,19 1,22 1,19

peterson4 3,76 1,23 1,23 1,74 1,23 1,77 1,23 1,23 1,23 1,23

philo.pml 9,81 3,90 4,23 5,94 7,82 8,79 3,90 4,31 3,90 3,90

SMALL1 4,41 2,34 2,34 2,45 2,34 2,53 2,34 2,34 2,34 2,34

smcs 3,84 1,45 1,37 1,94 2,84 3,45 1,45 1,37 1,45 1,38

snoopy 3,38 1,24 1,31 1,43 1,36 2,22 1,24 1,28 1,24 1,28

X.509.prm 3,99 1,59 1,41 2,37 3,61 3,95 1,59 1,40 1,59 1,41

Table 4. Reductions and speed of the algorithms with and without weak stubborn sets and necessary disabling sets.

Strong stubborn set No NDS Weak stubborn set

deletion heuristic deletion heuristic deletion heuristic

∆|S| |S|/sec ∆|S| |S|/sec ∆|S| |S|/sec ∆|S| |S|/sec ∆|S| |S|/sec ∆|S| |S|/sec

brp.prm 34,8% 91.816 28,0% 254.404 34,8% 203.763 28,0% 308.187 35,6% 91.359 28,0% 235.486

garp 3,8% 30.922 3,6% 59.965 3,8% 58.695 3,6% 86.436 2,1% 27.360 2,6% 37.032

iprotocol0 6,1% 23.062 5,7% 70.706 6,1% 67.642 7,3% 82.416 11,3% 23.264 5,9% 28.142

iprotocol2 17,6% 73.194 16,1% 189.562 17,6% 154.766 18,0% 190.713 30,3% 74.959 14,8% 65.773

p117.pml 41,8% n/a 46,3% n/a 41,8% n/a 46,3% n/a 41,8% n/a 46,3% n/a

peterson4 3,0% 70.698 2,9% 212.681 3,0% 125.135 2,9% 256.689 3,0% 71.642 2,9% 191.852

philo.pml 4,9% 29.171 7,9% 31.683 4,9% 40.548 5,1% 39.764 4,9% 25.827 9,7% 23.523

SMALL1 17,8% n/a 17,8% n/a 17,8% n/a 17,8% n/a 17,8% n/a 17,8% n/a

smcs.promela 6,6% n/a 7,6% n/a 6,6% n/a 7,6% n/a 6,6% n/a 7,6% n/a

snoopy 9,2% 12.034 15,2% 21.964 9,2% n/a 12,8% n/a 9,2% 12.034 8,4% 11.745

X.509.prm 7,6% n/a 12,7% n/a 7,6% n/a 13,1% n/a 7,8% n/a 13,0% n/a

14 Alfons Laarman et al.: Guard-based Partial-Order Reduction

shows the potential to yield even better reductions than
the deletion algorithm, i.e. brp and garp. However, in
most cases, the deletion algorithm shows better results,
sometimes significantly better: snoopy and X.509.

The performance of the Beam heuristic search algo-
rithm is however consistently better than that of the
deletion algorithm (where the runtimes were too small
to measure accurately, we give ‘n/a’). In some cases, the
difference is around a factor 3, i.e. peterson4 and brp.
This confirms our expectation that the algorithm has
more potential for early termination.

To gain better insight into the different aspects of
the algorithm that influence its performance, we also dis-
abled the Beam search by using only one search context.
This corresponds to running the basic closure algorithm
with heuristics for necessary enabling set selection. To
compensate for the loss of resolving the nondetermin-
ism at the initial selection of an enabled transition, we
use random selection there (we found that without ran-
dom selection, reductions are worse). Alternately, we also
completely disabled the heuristic selection, again resolv-
ing the nondeterminism of selecting necessary enabling
sets randomly. Essentially this corresponds to the Beam
search running the plain closure algorithm. Finally, we
also disabled both heuristic selection and Beam search,
yielding a plain closure algorithm.

These different variants of the algorithm are shown
in the last 3 columns of Table 2: ‘Closure heur.’, ‘Beam
no heur.’ and ‘Closure’. The conclusion from these re-
sults can be drawn unambiguously, as reductions are
consistently worse than our Beam search with heuristics.
Only the closure algorithm with heuristics can yield some
acceptable reductions showing that a good selection of
the necessary enabling sets is indispensable and that our
heuristics do a good job at it.

What is even more surprising is that the runtime per-
formance of the simpler versions of these algorithms does
not notably increase. Without heuristic selection, we even
witness much slowdown. Depending on how valid we as-
sume the relative performance metric of number of states
per second (it may be the case that the performance of
the underlying exhaustive exploration algorithm depends
on the number of states processed, although we think
that in LTSmin’s case this is barely so), we could draw
2 interesting conclusions:
1. The cost of maintaining the heuristic outweighs the

costs of going through larger search spaces as a result
of bad necessary enabling set selection. In other words,
also for (relative) performance it is crucial to make
good choices for the necessary enabling sets.

2. The search scheduling in the beam search does a good
job at avoiding searches from bad ‘scape goats’, i.e.
bad choices of the initial enabled transition. In other
words, the algorithm indeed seems to ‘terminate early’
often.

At least for these problems, we thus find that the perfor-
mance of the c2|T |2 Beam search algorithm with heuris-

tics is closer to the (almost linear) c2|T | closure algorithm,
than to the deletion algorithm with the same complexity.

7.3 Necessary Disabling Sets

To investigate the effects of the necessary disabling sets
(Section 4.2), we turned off the extension of necessary
enabling sets (NESs) with the disabling sets (NDSs) from
Section 4.2.

Table 4 shows the results without NDSs in the middle
column. The original results of the strong stubborn set
with NDSs is again included for easy lookup. If we inspect
the columns of the deletion algorithm, we see that it yields
the same reductions regardless of the presence of NDSs
in the NESs.

Consider that the algorithm delivers a subset mini-
mal result as shown in Theorem 1, starting from the first
enabled transition and deterministically processing all
others. Because the NDSs only added NES dependencies
in to the dependency graph searched by the deletion
algorithm, thus weakening the dependencies (the chance
should be lower that a ‘disappearing’ NES causes dis-
ables states to be deleted). Theoretically it could thus
potentially add smaller subsets that are still valid, i.e.
still have a key transition. But here we do not find any
(we checked that the state counts are exactly the same),
thus indicating some strong relation between NESs and
NDSs. At the same this explains why the runtimes of the
deletion algorithm increase.

For the heuristics approach, the situation is different
even if the NDSs have little chance to allow for more
reductions. As Example 5 showed, NDSs allow the algo-
rithm to find smaller stubborn sets quicker. The heuristic
forward search approach might benefit from this. The
experiments show that the reductions can be improved,
though inconsistently so, indicating that the heuristic
nature of the algorithm is the cause again. Unfortunately,
we do not find any faster runtimes. This does not surprise
us, as the implementation of the heuristic with NDSs dou-
bles the arrays containing the costs. Therefore, we still
believe that the NDSs can aid stubborn set computation.

Similar results can be shown in Table 5 for DVE
BEEM models. First, the heuristic selection improves
reductions (column Beam+h). For instance, for
cyclic scheduler.1. The reduction improves in nearly
all cases, and it improves considerably in several cases.
Combined with the heuristic selection, NDSs provide
some improvement of the reduction though not consis-
tently (column Beam+h+d). In particular, for
leader election the reduction doubles again.

7.4 Smaller Stubborn Sets and State Space Size

The difference in state space reductions however may give
an obscured impression of the real algorithm’s reduction
power, as smaller sets are only likely to yield smaller

Alfons Laarman et al.: Guard-based Partial-Order Reduction 15

state spaces, but do not guarantee it. In order to obtain
a more objective look in the reduction potential of the
algorithm, we investigate the branching factor, i.e. the
average number of outgoing transitions at a state, of the
reduced state spaces for all approaches (strong and weak
theory, and no necessary disabling sets).

Table 3 shows these results for the deletion algo-
rithm and the Beam heuristic search (Column ‘Strong’).
Indeed, we can identify models for which the deletion
algorithm finds, on average, smaller stubborn sets, while
still yielding a larger state space. Examples are: brp and
iprotocol2. But also the other way around: p117, smcs
and X.509, showing indeed that smaller sets are only a
heuristics.

Nonetheless, these results do not invalidate the conclu-
sions drawn in the previous subsection, as the differences
in branching factors between the different algorithms, cor-
relate highly with the differences in state space reduction
of these algorithms.

7.5 Weak Stubborn Sets

Table 4 shows the results obtained using the weak defini-
tion of stubborn sets. In some important cases this leads
to good improvements in the reductions, e.g.: garp. In
one case, it leads to the opposite: iprotocol. This holds
for both algorithms.

The performance remains largely the same for both
algorithms, except that the heuristic approach shows
some cases with performance decrease. These cases corre-
spond to the same models that have a better and worse
reduction, indicating that the algorithm has processed
more dependencies, which could indeed be a symptom of
both better and worse reductions (for better reductions,
new reduction paths have been considered).

7.6 Comparison with Empirical Evaluation of Ample Sets

Table 5 shows the results obtained on those models from
the BEEM database [38] that were selected by Gelden-
huys, Hansen and Valmari [12]. The table is sorted by
the best theoretical process-based ample-set reduction
(best first). These numbers (column ample) are taken
from [12, column ample2 Df/Rf]. They indicate the ex-
perimentally established best possible reduction that can
be achieved with the deadlock-preserving process-based
ample-set method (without C2/C3), while considering
conditional dependencies based on full information on
the state space.

The amount of reduction is expressed as the percent-
age of the reduced state space compared to the original
state space (100% means no reduction). The next three
columns show the reduction achieved by the guard-based
stubborn approach, based on necessary enabling sets only
(nes), the heuristic selection function (nes+h), and the re-
sult of including the necessary disabling sets (nes+h+d).

The results vary a lot. For instance, the best possible
ample-set reduction in cyclic scheduler.1 is far better
than the actual reduction achieved with stubborn sets
(nes). However, for cyclic scheduler.2 the situation
is reversed. Other striking differences are mcs.1 versus
leader election. Since we compare best case ample sets
(using global information) with actual stubborn sets (us-
ing only static information), it is quite informative to
see that guard-based stubborn sets can provide more
reduction than ample sets. It might be possible that the
ample-set algorithm with a dependency relation based on
the full state space (Df/Rf, [12]) is still coarse, but this is
unlikely. Further comparison reveals that many models
yield also better reductions than those using dynamic
relations (Dd/Rd, [12]), e.g. protocols.3 with 7% vs
70%. This prompted us to verify our generated stubborn
sets, but we found no violations of the stubborn set defi-
nition. There are two differences in the implementations
of the two methods. Firstly, the guard-based approach
constructs the stubborn sets one transition at a time,
whereas the ample-set method used in [12] builds them
one process at a time. Secondly, the ample-set method
does not consider multiple necessary enabling sets. In-
stead, it is equivalent to using one necessary enabling set
for each transition that are enabled by a given program
counter, but disabled for other reasons. We cannot say
for certain, how much of the loss in reduction is caused
by each factor, but our other experiments suggest that
the coarse necessary enabling sets are a more likely cause.

7.7 Comparison with Ample Sets in Spin

Additionally, we compared our partial-order reduction re-
sults to the ample-set algorithm as implemented in Spin.
Here we can also compare time resource usage. We ran
LTSmin with arguments --strategy=dfs -s26 --por,
and we compiled Spin with -O2 -DNOFAIR

-DNOBOUNDCHECK -DSAFETY, which enables POR by de-
fault. We ran the pan-verifier with -m10000000 -c0 -n

-w26. To obtain the same state counts in Spin, we had
to turn off control flow optimizations (-o1/-o2/-o3) for
some models (see ltsmin/spins/test/).

Table 6 shows the results. Overall, we witness consis-
tently better reductions by the guard-based algorithm
(using Beam search with heuristics and additional nec-
essary disabling sets). The reductions are significantly
larger than the ample-set approach in the cases of garp,
dining philosophers (philo.pml) and iprotocol. As a
consequence, guard-based POR in LTSmin reduces mem-
ory usage considerably more than ample-based POR in
Spin. (Though we included memory use for complete-
ness’ sake, it only provides an indirect comparison, due
to a different state representation and compression in
LTSmin [30]).

On the other hand, the additional computational
overhead of our algorithm is clear from the runtimes. In
Section 7.2, we identified that this is not a problem of the

16 Alfons Laarman et al.: Guard-based Partial-Order Reduction

Table 5. Comparison of guard-based POR with strong stubborn sets and heuristic (+h) Beam search and NDS (+d) with [12]

ample Beam Beam Beam

Model -h-d +h-d h+d

cyclic scheduler.1 1% 58% 1% 1%

mcs.4 4% 16% 16% 16%

firewire tree.1 6% 8% 8% 8%

phils.3 11% 14% 16% 16%

mcs.1 18% 87% 85% 85%

anderson.4 23% 58% 46% 46%

iprotocol.2 26% 19% 17% 16%

mcs.2 34% 64% 64% 64%

phils.1 48% 60% 48% 48%

firewire link.2 51% 24% 21% 19%

krebs.1 51% 94% 93% 93%

leader election.3 54% 13% 12% 6%

telephony.2 60% 95% 95% 95%

leader election.1 61% 23% 22% 11%

szymanski.1 63% 68% 65% 65%

production cell.2 63% 26% 24% 24%

at.1 65% 96% 95% 95%

szymanski.2 66% 66% 64% 64%

leader filters.2 66% 57% 53% 53%

lamport.1 66% 95% 95% 95%

protocols.2 68% 18% 13% 13%

collision.1 68% 88% 59% 56%

ample Beam Beam Beam

Model -h-d +h-d h+d

driving phils.1 69% 99% 68% 78%

protocols.3 71% 13% 7% 7%

peterson.2 72% 82% 82% 82%

driving phils.2 72% 99% 45% 45%

collision.2 74% 75% 40% 39%

production cell.1 74% 23% 19% 19%

telephony.1 75% 95% 95% 95%

lamport.3 75% 96% 95% 96%

firewire link.1 79% 42% 37% 33%

pgm protocol.4 81% 93% 56% 55%

bopdp.2 85% 90% 73% 73%

fischer.1 87% 87% 87% 87%

bakery.3 88% 99% 96% 96%

exit.2 88% 94% 94% 94%

brp2.1 88% 95% 80% 79%

public subscribe.1 89% 81% 79% 76%

firewire tree.2 89% 84% 63% 47%

pgm protocol.2 89% 96% 72% 72%

brp.2 96% 76% 42% 42%

extinction.2 96% 25% 24% 21%

cyclic scheduler.2 99% 46% 28% 27%

synapse.2 100% 93% 93% 93%

Table 6. Guard-based POR in LTSmin vs ample-set POR in Spin (seconds and MB)

No Partial-Order Reduction Guard-based POR Ample-set POR

LTSmin Spin LTSmin Spin

Model States |ST | Trans |∆| time time |ST | |∆| mem time |ST | |∆| mem time

garp 48.363.145 247.135.869 166,1 267,0 4% 1% 20,3 28,8 18% 9% 932,1 25,2

i-protocol2 14.309.427 48.024.048 27,7 30,3 16% 10% 29,2 12,1 24% 16% 239,9 6,0

peterson4 12.645.068 47.576.805 22,7 17,0 3% 1% 5,7 1,8 5% 2% 37,0 0,5

i-protocol0 9.798.465 45.932.747 29,3 37,7 6% 2% 6,8 7,8 44% 29% 361,7 12,3

brp.prm 3.280.269 7.058.556 6,0 5,6 28% 15% 14,6 3,6 58% 39% 160,9 2,4

philo.pml 1.640.881 16.091.905 9,8 10,2 8% 3% 1,9 4,1 100% 100% 125,4 10,7

sort 659.683 3.454.988 2,8 3,8 182 181 0,0 0,3 182 181 0,3 0,0

i-protocol3 388.929 1.161.274 1,0 0,7 14% 7% 0,9 0,6 26% 16% 6,6 0,1

i-protocol4 95.756 204.405 0,5 0,1 27% 18% 0,4 0,5 38% 28% 2,5 0,0

snoopy 81.013 273.781 0,6 0,2 15% 6% 0,3 0,6 17% 7% 1,2 0,0

peterson3 45.915 128.653 0,4 0,0 8% 3% 0,1 0,4 10% 4% 0,5 0,0

SMALL1 36.970 163.058 0,5 0,0 18% 9% 0,1 0,4 48% 45% 0,9 0,0

SMALL2 7.496 32.276 0,4 0,0 19% 10% 0,0 0,4 48% 44% 0,4 0,0

X.509.prm 9.028 35.999 0,4 0,0 13% 4% 0,0 0,4 68% 34% 1,1 0,0

dbm.prm 5.112 20.476 0,4 0,0 100% 100% 0,1 0,5 100% 100% 0,7 0,0

smcs 5.066 19.470 0,4 0,1 8% 3% 0,0 0,3 25% 11% 0,7 0,0

Alfons Laarman et al.: Guard-based Partial-Order Reduction 17

Table 7. Reductions obtained for LTL model checking problems with deletion algorithm and the heuristic Beam search

Strong with heur. Beam C2 instead of V+I C3 instead of C3’

No POR deletion heuristic deletion heuristic deletion heuristic

|S| |T | ∆|S| |T |/sec ∆|S| |T |/sec ∆|S| |T |/sec ∆|S| |T |/sec ∆|S| |T |/sec ∆|S| |T |/sec

garp 7E+7 4E+8 14,4% 23.679 18,3% 48.875 16,3% 66.408 20,1% 199.149 16,7% 26.873 20,0% 69.286

iprotocol2 2E+7 6E+7 34,4% 80.237 32,8% 64.186 32,8% 181.935 33,0% 330.651 37,4% 66.076 32,9% 73.049

pacemaker-con 2E+7 5E+7 41,4% 24.427 46,1% 41.013 45,0% 33.339 63,8% 79.318 70,6% 27.381 63,1% 51.331

pacemaker-dis 7E+7 2E+8 27,9% 28.065 46,1% 83.239 28,7% 34.014 46,7% 121.933 48,4% 30.834 46,7% 93.566

peterson4 8E+7 3E+8 12,6% 46.543 13,5% 81.356 12,6% 69.853 13,9% 138.624 14,8% 48.505 13,9% 91.553

way we compute stubborn sets (by means of heuristics and
Beam search). The explanation can therefore be found
in the fact that the stubborn-set algorithm considers all
transitions whereas the ample-set algorithm only chooses
amongst the less numerous process components of the
system.However, the runtimes never exceed the runtimes
of benchmarks without partial-order reduction by a great
margin.

7.8 LTL Model Checking

To evaluate the performance of guard-based POR un-
der LTL model checking, we compare the results here
with Spin, and also use different provisos to assess their
benefits. For this purpose, we use the following set of 5
Promela models and LTL formulae:

garp the GARP protocol[24], with livelock: �♦progress,
i-protocol2 the i-protocol [8], with livelock: �♦progress,
pacemaker-concurrent a concurrent model of a Car-

diac pacemaker [43] with the invariant property �(p∧
(q ⇒ r)),

pacemaker-distributed the same model with the prop-
erty �((p⇒ q) ∧ (r ⇒ s)), and

peterson the peterson mutual exclusion protocol as in-
cluded in the Spin distribution, with the livelock
�♦progress.

Some of these properties are rather simple LTL formulae.
In fact, the invariants can be checked with specific safety
provisos [51]. However, this does not matter for the anal-
ysis here, as the ignoring provisos is anyway triggered
by cycles in the state space, and the formulae contain
several propositions that the visibility provisos must take
into account.

Comparing the deletion algorithm with heuristic Beam
heuristic search in the second column of Table 7, we
see this time that the deletion algorithm almost always
achieves better reductions. This can be attributed to the
tight integration of the visibility and ignoring proviso
with the algorithm. For example, the visibility proviso
can simply be implemented as constraint between visible
transitions [51, Sec. 7.4]. While the same is true for the
heuristic algorithm, it has no way to backtrack from bad
choices, i.e. the inclusion of a visible enabled transition

Table 8. Reductions obtained for LTL model checking problems
with Spin’s ample set

|S| |T | ∆|S| |T |/sec 1
∆
|SDeletion |

garp 4E+7 2E+8 16,3% 585.734 88,3%

iprotocol2 2E+7 6E+7 45,1% 644.272 76,1%

pacemaker-con 2E+7 5E+7 90,0% 983.618 46,0%

pacemaker-dis 7E+7 2E+8 93,9% 820.532 29,7%

peterson4 1E+8 5E+8 9,9% 1.128.331 127,3%

in the set. And it has only limited capabilities of avoiding
this via the heuristic that includes extra costs for visible
transitions (see Section 5).

We also experimented with the different visibility and
ignoring provisos (middle and last column of the table).
Choosing the stronger provisos negative impact on the
reductions for both algorithms. This shows that indeed
often visible transitions do not have to be included in
the stubborn set, and that when they are, for example
via C3’, this does not have to lead automatically to the
inclusion of many enabled transitions. But also that the
inclusion of the invisible transitions is not so costly in
these cases.

While the performance of the Deletion algorithm often
remains the same, the heuristic approach clearly benefits
from the stronger provisos. Surprisingly also when the
reduction is similar, e.g. see iprotocol2. This is likely
because the additional checks for the weak provisos are
expensive.

Table 8 shows the same measurements for Spin’s
ample-set implementation for LTL [40,44]. Unfortunately,
we were unable to consistently obtain exactly the same
state counts due to the different way that Spin processes
the LTL properties (with reachability, we do obtain the
same state count for all models). For this reason, we
also included the reduced state space size of the Deletion
algorithm relative to Spin (1

∆SDeletion), figuring that
the difference in state counts will largely be negated by
both reduction techniques. In all cases, the stubborn set
method reduces state spaces better, even when the unre-
duced state space is already smaller in Spin, e.g. garp.
Because the ample set works on the level of processes,

18 Alfons Laarman et al.: Guard-based Partial-Order Reduction

we again see that the number of generated transitions
per second is much higher for Spin.

7.9 Validation

Implementing POR methods is a detailed, and error-
prone task. For validation of the results, we implemented
a small checker that verifies the constraints D1 and D2
(and non-emptiness) from Section 3.1 for each explored
state. This checker is implemented as a Pins2Pins wrap-
per itself (see Section 5), which solely considers the struc-
ture of the full state space and the stubborn set of tran-
sitions that it obtains from the higher POR layer.

In order to check the constraints for a state s, the
checker explores all states s′ reachable from that state
over non-stubborn transitions t′ using DFS. At the same
time, at each location in the DFS stack, all stubborn
transitions are tried (stubborn at s that is). Each stub-
born transition t is checked for commutativity with the
t′ along the DFS stack, or not if t′ has become disabled
as the weak sets allow. This amounts to checking left-
accordance according to Definition 8 for all transitions on
the stack (non-stubborn), with all stubborn transitions.

We ran this checker on most of the Promela and
some of the Dve models discussed here. This gives a good
confidence that at least the reachability results presented
here are correct. So much cannot be said for the LTL
results, for which it is much harder to checker whether
indeed all infinite paths are preserved.

8 Conclusions

We proposed guard-based partial-order reduction, as a
language-agnostic implementation of the stubborn set
method. It extends Valmari’s stubborn sets for transition
systems [50] with an abstract interface (Pins) to language
modules. It also makes more use of previous notions of
guards [52], by considering them as disabling conditions
as well. The main advantage is that a single implementa-
tion of POR can serve multiple specification languages
front-ends and multiple high-performance model checking
back-ends. This requires only that the front-end, or lan-
guage module, exports guards, guarded transitions, affect
sets, and the do-not-accord matrix (DNA). Optional ex-

tensions are matrices MC g, N pins, N pins
(computing the

latter merely requires negating the guards), and for weak
sets a do-not-left-accord matrix (DNB). These expose
more static information to yield better reduction.

We implemented these functions for the Dve and
Promela language modules in LTSmin. It should now
be a trivial exercise to add partial-order reduction to the
mCRL2 [9] and UPPAAL [32] language modules [17,7,
28]. Since the linear process of mCRL2 is rule-based and
has no natural notion of processes, our generalization is
crucial.

We introduced two improvements to the basic stub-
born set method. The first uses necessary disabling sets
to identify necessary enabling sets of guards that cannot
be co-enabled. This allows for the existence of smaller
stubborn sets. Most of the reduction power of the algo-
rithm is harvested by the heuristic selection function,
which actively favours small stubborn sets.

To do a cost-benefit analysis of the heuristic selection
criterion, we worked out a version of the deletion algo-
rithm for guard-based POR. Experimental comparison
with this algorithm provides strong evidence that the
heuristic selection is a powerful tool to generate small
stubborn sets at relatively low costs. Indeed the heuristic
selection algorithm is consistently faster, over a factor 4,
than the deletion algorithm, while yielding similar reduc-
tions. Experiments further show that a good resolution
of the non-determinism in the stubborn-set definition is
indispensable. While the deletion algorithm solves this,
it carries great costs. The heuristic selection with Beam
search implemented here was shown to circumvent much
of this problem. We also experimented with the SCC
algorithm from [49,51], but the results were meagre, es-
pecially since it does not combine well with heuristic
selection.

To evaluate the limits of our approach, we also worked
out weak sets and benchmarked their benefits. Results
show foremost the heuristic the nature of POR itself.
While overall an improvement, reductions are not con-
sistently better, and in some isolated cases much worse.
Additionally, evaluation of the results is hard, as the na-
ture of the stubborn sets is heuristic: Finding the smallest
set is well-known to be as expensive as the exhaustive ex-
ploration itself, therefore any reasonable algorithm needs
to make use of approximations. Moreover, the smallest
stubborn set is still no guarantee for smaller state spaces,
as a smaller set might lead to different states in the ex-
haustive exploration, than some other larger set. Our
experimental comparison of branching factors with state
space sizes indeed confirms that smaller average sets,
might still result in more state, and vice versa. The next
step in obtaining better reductions would be to evaluate
the effects of different small stubborn sets at each state
on the entire state space. This could lead to a heuristic
to replace the current smallest-set heuristic.

Further evaluation shows the competitiveness to other
tools. Compared to the best possible ample set with
conditional dependencies derived from prior knowledge
about the state space, the stubborn set yields better
reductions in a number of cases. Compared to Spin’s
ample set, LTSmin consistently provides more reduction,
but takes more time to do so, probably because of the
additional complexity of the stubborn set method that
operates on guards and transitions, as opposed to the
process components used by the ample-set.

Recently, LTSmin’s parallel algorithms [10,26] fully
support LTL model checking with POR, thanks to a
new parallel cycle proviso implementing the C3/C3’ pro-

Alfons Laarman et al.: Guard-based Partial-Order Reduction 19

viso [25]. One benefit for the parallel algorithms is that
both the heuristic selection and deletion algorithms can
find small stubborn sets deterministically, which avoids
well-known problems with possible re-explorations [20,
42,27].

Challenges remain, as not all of LTSmin’s algorithmic
backends can fulfil the POR layer’s requirements. For
example, LTSmin’s symbolic algorithms [34] do not yet
support state-local implementation of POR in LTSmin’s
Pins2Pins wrapper, as they operate on sets of partial
states [3]. In general, symbolic algorithms are hard to
combine with classic POR methods [21], though some
solutions do exists that take different approach [21,1].

Since the first publication of our guard-based partial-
order reduction method in [29], some related work has
seen the light of day.

The heuristic selection algorithm been used to solve
planning problems. Wehrle and Helmert [57] show that
the algorithm performs well in this different setting. They
also propose orthogonal methods to improve stubborn
sets for finding the planning goal. To this extend, they
define envelopes of relevant transitions leading to goal
states, a method that can also be exploited by our al-
gorithm, as goal finding translates to error/invariant
detection in the model checking setting.

Siegel [45] and Kokkarinen et al. [23] show elegant
ways to further improve the visibility proviso. The latter
is orthogonal to our definition of visibility T nes

v , while
the former generalizes and further weakens the visibil-
ity proviso (allowing more different stubborn sets and
therefore possibly better reductions). Chu and Jaffar [4]
take a more rigorous approach and refine the persistent
set method specifically for safety properties, resulting
in a weaker notion of commutativity analogous to the
subsumption-based definition for timed automata pro-
posed in [17].

Acknowledgments. We are grateful to Antti Valmari,
Patrice Godefroid and Dragan Bošnački for useful dis-
cussions and advice.

References

1. R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and
S.K. Rajamani. Partial-order reduction in symbolic state
space exploration. In Orna Grumberg, editor, CAV, vol-
ume 1254 of LNCS, pages 340–351. Springer, 1997.

2. F.I. van der Berg and A.W. Laarman. SpinS: Extending
LTSmin with Promela through SpinJa. In PDMC 2012,
London, UK, ENTCS. Spinger, September 2012.

3. S.C.C. Blom, J.C. van de Pol, and M. Weber. LTSmin:
Distributed and symbolic reachability. In CAV, volume
6174 of LNCS, pages 354–359. Springer, 2010.

4. Duc-Hiep Chu and Joxan Jaffar. A framework to synergize
partial order reduction with state interpolation. In Eran
Yahav, editor, HVC, volume 8855 of LNCS, pages 171–187.
Springer, 2014.

5. E.M. Clarke. The birth of model checking. In 25 Years
of Model Checking, pages 1–26. Springer, 2008.

6. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yan-
nakakis. Memory Efficient Algorithms for the Verification
of Temporal Properties. In CAV, volume 531 of LNCS,
pages 233–242. Springer, 1990.

7. Andreas E. Dalsgaard et al. Multi-core Reachability for
Timed Automata. In FORMATS 2012, volume 7595 of
LNCS, pages 91–106. Springer, 2012.

8. Yifei Dong, Xiaoqun Du, Y.S. Ramakrishna, C.R. Ra-
makrishnan, I.V. Ramakrishnan, Scott A. Smolka, Oleg
Sokolsky, Eugene W. Stark, and David S. Warren. Fight-
ing livelock in the i-protocol: A comparative study of ver-
ification tools. In W. Rance Cleaveland, editor, TACAS,
volume 1579 of LNCS, pages 74–88. Springer, 1999.

9. J.F. Groote et al. The mCRL2 toolset. In Proceedings of
the International Workshop on Advanced Software Devel-
opment Tools and Techniques, WASDeTT, 2008.

10. S. Evangelista, A. Laarman, L. Petrucci, and J. van de
Pol. Improved Multi-core Nested Depth-First Search. In
ATVA, LNCS 7561, pages 269–283. Springer, 2012.

11. S. Evangelista and C. Pajault. Solving the Ignoring
Problem for Partial Order Reduction. STTT, 12:155–170,
2010.

12. J. Geldenhuys, H. Hansen, and A. Valmari. Exploring
the scope for partial order reduction. In ATVA’09, LNCS,
pages 39–53. Springer, 2009.

13. P. Godefroid. Using Partial Orders to Improve Automatic
Verification Methods. In CAV, volume 531 of LNCS, pages
176–185. Springer, 1990.

14. P. Godefroid. Partial-Order Methods for the Verifica-
tion of Concurrent Systems: An Approach to the State-
Explosion Problem. Springer, 1996.

15. P. Godefroid and D. Pirottin. Refining dependencies
improves partial-order verification methods. In CAV,
volume 697 of LNCS, pages 438–449. Springer, 1993.

16. P. Godefroid and P. Wolper. Using partial orders for
the efficient verification of deadlock freedom and safety
properties. FMSD, 2:149–164, 1993.

17. Henri Hansen, Shang-Wei Lin, Yang Liu, Truong Khanh
Nguyen, and Jun Sun. Diamonds are a girl’s best friend:
Partial order reduction for timed automata with abstrac-
tions. In Armin Biere and Roderick Bloem, editors, CAV,
volume 8559 of LNCS, pages 391–406. Springer, 2014.

18. G.J. Holzmann. The model checker SPIN. IEEE TSE,
23:279–295, 1997.

19. G.J. Holzmann and D. Peled. An Improvement in Formal
Verification. In IFIP WG6.1 ICFDT VII, pages 197–211.
Chapman & Hall, Ltd., 1995.

20. G.J. Holzmann, D Peled, and M. Yannakakis. On Nested
Depth First Search. In SPIN, pages 23–32. American
Mathematical Society, 1996.

21. V. Kahlon, C. Wang, and A. Gupta. Monotonic partial
order reduction: An optimal symbolic partial order reduc-
tion technique. In CAV, LNCS, pages 398–413. Springer,
2009.

22. S. Katz and D. Peled. An efficient verification method
for parallel and distributed programs. In REX Workshop,
volume 354 of LNCS, pages 489–507. Springer, 1988.

23. I. Kokkarinen, D. Peled, and A. Valmari. Relaxed visi-
bility enhances partial order reduction. In Orna Grum-
berg, editor, CAV, volume 1254 of LNCS, pages 328–339.
Springer, 1997.

20 Alfons Laarman et al.: Guard-based Partial-Order Reduction

24. I. Konnov and O.A. Letichevsky Jr. Model Checking
GARP Protocol using Spin and VRS. International
Workshop on Automata, Algorithms, and Information
Technologies, May 2010.

25. A. W. Laarman and Anton J. Wijs. Partial-Order Reduc-
tion for Multi-core LTL Model Checking. In Eran Yahav,
editor, HVC 2014, volume 8855 of LNCS, pages 267–283.
Springer, 2014.

26. A.W. Laarman. Scalable Multi-Core Model Checking.
PhD thesis, University of Twente, 2014.

27. A.W. Laarman and Fárago D. Improved On-The-Fly
Livelock Detection. In NFM, accepted for publication in
LNCS. Springer, 2013.

28. A.W. Laarman, M. Chr. Olesen, A.E. Dalsgaard, K.G.
Larsen, and J.C. van de Pol. Multi-core Emptiness Check-
ing of Timed Büchi Automata Using Inclusion Abstrac-
tion. In N. Sharygina and H. Veith, editors, CAV, volume
8044 of LNCS, pages 968–983. Springer, 2013.

29. A.W. Laarman, E. Pater, J.C. van de Pol, and M. Weber.
Guard-based partial-order reduction. In Ezio Bartocci and
C.R. Ramakrishnan, editors, Model Checking Software,
volume 7976 of LNCS, pages 227–245. Springer, 2013.

30. A.W. Laarman, J.C. van de Pol, and M. Weber. Parallel
Recursive State Compression for Free. In SPIN, LNCS,
pages 38–56. Springer, 2011.

31. A.W. Laarman, J.C. van de Pol, and M. Weber. Multi-
Core LTSmin: Marrying Modularity and Scalability. In
NFM, LNCS 6617, pages 506–511. Springer, 2011.

32. K. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell.
STTT, 1:134–152, ’97.

33. A. Lehmann, N. Lohmann, and K. Wolf. Stubborn sets
for simple linear time properties. In Application and
Theory of Petri Nets, volume 7347 of LNCS, pages 228–
247. Springer, 2012.

34. J. Meijer, G. Kant, S.C.C. Blom, and J.C. van de Pol.
Read, write and copy dependencies for symbolic model
checking. In Eran Yahav, editor, Hardware and Software:
Verification and Testing, volume 8855 of LNCS, pages
204–219. Springer, 2014.

35. W.T. Overman. Verification of concurrent systems: func-
tion and timing. PhD thesis, University of California, Los
Angeles, 1981. AAI8121023.

36. Peng Si Ow and Thomas E Morton. Filtered beam search
in scheduling? The International Journal Of Production
Research, 26(1):35–62, 1988.

37. E. Pater. Partial Order Reduction for PINS, Master’s
thesis, March 2011.

38. R. Pelánek. BEEM: Benchmarks for explicit model check-
ers. In Proc. of SPIN Workshop, volume 4595 of LNCS,
pages 263–267. Springer, 2007.

39. D. Peled. All from One, One for All: on Model Checking
Using Representatives. In CAV, pages 409–423. Springer,
1993.

40. D. Peled. Combining Partial Order Reductions with On-
the-Fly Model-Checking. In CAV, volume 818 of LNCS,
pages 377–390. Springer, 1994.

41. Amir Pnueli. The temporal logic of programs. In FOCS,
pages 46–57. IEEE Computer Society, 1977.

42. S. Schwoon and J. Esparza. A Note on On-the-Fly Veri-
fication Algorithms. In TACAS, volume 3440 of LNCS,
pages 174–190. Springer, 2005.

43. Asankhaya Sharma. End to End Verification and Valida-
tion with SPIN. CoRR, abs/1302.4796, 2013.

44. S.F. Siegel. Reexamining two results in partial order
reduction. Technical report, University of Delaware, 2011.

45. S.F. Siegel. Transparent partial order reduction. FMSD,
40(1):1–19, 2012.

46. A. Valmari. Error Detection by Reduced Reachability
Graph Generation. In APN, pages 95–112, 1988.

47. A. Valmari. Heuristics for Lazy State Generation Speeds
up Analysis of Concurrent Systems. In STeP-88, volume 2,
pages 640–650. Helsinki, 1988.

48. A. Valmari. Eliminating Redundant Interleavings During
Concurrent Program Verification. In PARLE, volume 366
of LNCS, pages 89–103. Springer, 1989.

49. A. Valmari. A Stubborn Attack On State Explosion. In
CAV, LNCS, pages 156–165. Springer, 1991.

50. A. Valmari. Stubborn Sets for Reduced State Space Gen-
eration. In ICATPN/APN’90, pages 491–515. Springer,
1991.

51. A. Valmari. The State Explosion Problem. In LPN, pages
429–528. Springer, 1998.

52. A. Valmari and H. Hansen. Can Stubborn Sets Be Opti-
mal? In J. Lilius and W. Penczek, editors, ATPN, volume
6128 of LNCS, pages 43–62. Springer, 2010.

53. Antti Valmari. Stubborn set methods for process alge-
bras. In DIMACS workshop on Partial order methods in
verification, pages 213–231. AMS Press, Inc., 1997.

54. M.Y. Vardi and P. Wolper. An Automata-Theoretic
Approach to Automatic Program Verification. In LICS,
pages 332–344. IEEE, 1986.

55. K. Varpaaniemi. Finding small stubborn sets automati-
cally. In Volkan Atalay, Uğur Halıcı, Kemal İnan, Neşe
Yalabık, and Adnan Yazıcı, editors, Proceedings of the
Eleventh International Symposium on Computer and In-
formation Sciences, ISCIS XI, pages 133–142. Middle
East Technical University, Ankara, Turkey, 1996.

56. K. Varpaaniemi. On the Stubborn Set Method in Reduced
State Space Generation. PhD thesis, Helsinki University
of Technology, 1998.

57. Martin Wehrle and Malte Helmert. Efficient stubborn
sets: Generalized algorithms and selection strategies. In
International Conference on Automated Planning and
Scheduling. AAAI Publications, 2014.

	Introduction
	A Computational Model of Guarded Transitions
	Partial-Order Reduction with Stubborn Sets
	Computing Necessary Enabling Sets for Guards
	Partial-Order Reduction for On-The-Fly LTL Checking
	Implementation
	Experimental Evaluation
	Conclusions

