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Abstract. Partial-Order Reduction (POR) is a well-known, successful
technique for on-the-fly state space reduction in model checking, as ev-
idenced by the prestigious CAV 2014 award for its pioneers. The com-
bination of POR with LTL model checking is long known to cause the
so-called ignoring problem, i.e. relevant behavior is continuously ignored
and never selected for exploration. This problem has been solved with
increasing sophistication over the years, using various ignoring provisos,
which include all necessary actions along cycles in the state space.

However, parallel model checking algorithms still suffer from a lack of an
efficient solution; the best known ones causing severe decrease in reduc-
tions. We present a new parallel ignoring proviso for POR, which solves
this issue by exploiting parallel DFS-based algorithms. Its similarity to
the sequential solutions allows the combination with sophisticated earlier
methods solving the ignoring problem. We prove correctness of the new
proviso and empirically show that it maintains good reductions, runtime
performance and parallel scalability.

1 Introduction

In explicit-state model checking, the correctness of a concurrent system descrip-
tion M is verified with respect to a property ϕ. This is done by exhaustively
exploring M ′s potential behavior in the form of a state-space graph. Explicit-
state model checking is still an indispensable technique for formal verification of
software systems. However, full verification is severely limited by the need to ex-
plore and store the entire state space, which is often exponential in the size of M .

For many years, Moore’s law [25] guaranteed exponential advances in com-
putation capabilities, which for model checking meant that larger state spaces
– hence more complicated systems – could be analyzed. However, since a few
years, due to physical limitations, CPUs no longer deliver sequential speedups
with each new generation. Instead, now, the number of cores on CPUs grows
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exponentially. Only by exploiting this parallelism can one regain the previous
growth trends, but parallelizing model checking algorithms is far from trivial.

Recently, it has been shown that original (sequential) verification algorithms
based on depth-first search (DFS) can be parallelized efficiently for shared-
memory multi-core machines [8,18,15]. These solutions do not attempt to par-
allelize DFS, but instead choose the optimistic approach to run several local
DFS-based threads (workers) and lazily communicate sub-results. By random-
ized traversal, the workers are expected to explore different parts of the state
space and communicate little. Results are typically shared in the DFS backtrack,
which might not scale in theory, but in practice the algorithms have shown good
speedups [8]. First, [19] demonstrated how to perform parallel LTL model check-
ing based on the classic Nested Depth-First Search (NDFS) algorithm [7]. Since
then, this technique has been improved in various forms of multi-core NDFS
algorithms [8,18,20], and also employed for detecting Strongly Connected Com-
ponents [24,23]. In the current paper, we focus on the currently best performing
version of multi-core NDFS [8,18], which is referred to as a Combination of MC-
NDFSs (CNDFS), because it is the state-of-the-art solution for multi-core LTL
model checking (see Section 2).

Besides exploiting parallelism, another approach to handle larger state spaces
is by partial-order reduction (POR), which prunes those concurrent interleavings
of M ′ behavior that are irrelevant w.r.t. ϕ. For each reachable state of M , POR
selects a subset of the locally executable transitions, based on a static analysis
of the dependency relations in M ′ behavior. It can yield exponential reduc-
tions [31, Section 3]. Since the discovery and subsequent solving of the ignoring
problem [29], POR can also preserve LTL properties [1]. The ignoring problem
occurs when POR indefinitely postpones ϕ-relevant behavior by selecting similar
subsets of transitions at the states along infinite execution traces of M (captured
as cycles in its finite state-space graph). This problem can be solved by adding
an ignoring proviso, i.e. a strengthening condition that limits the possible tran-
sition subsets allowed by POR. For LTL, practical ignoring provisos depend on
cycles. Due to their heuristic nature and the difficulty of identifying cycles in a
graph (see Section 2), efficient provisos have been studied for many years [9].

The combination of multi-core (LTL) model checking and POR benefits from
both approaches. The ignoring problem however complicates matters, as its so-
lution depends on detecting cycles in the state space, which are hard to detect
in parallel algorithms. Not surprisingly, some existing parallel approaches either
increase POR’s time complexity and/or reduce reduction capability [3] (c.f. [15]).

In the current paper, we show how the ignoring problem can be handled
efficiently using CNDFS and the novel parallel cycle proviso. We both mitigate
the loss of reductions witnessed in previous parallel POR-enabled model checking
algorithms, but also enable the use of several optimizations from [9].

The structure of the paper is as follows: in Section 2, preliminary notions
are introduced, and CNDFS and POR are presented. In Section 3, we lift POR
to the multi-threaded setting of CNDFS. Section 4 contains our experimental
results, and ?? discusses related work. Finally, Section 5 draws conclusions.
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2 Preliminaries

We choose an action-based representation of state spaces. The state-space graph
G consists of a (finite) set of vertices or states S, with an initial state s0 ∈ S, and
a set of edges, the transitions T ⊆ S×Σ×S, where Σ represents a set of actions
in the system M , e.g. a statement for an imperative-language specification. We
call s′ a successor of s iff ∃α : (s, α, s′) ∈ T , denoted as s α−→ s′, or s → s′, in
case α is not relevant. Furthermore, we write s→+ s′ for (s, s′) ∈ T + (transitive
closure), and s →∗ s′ for (s, s′) ∈ T ∗ (reflexive, transitive closure). A path
through the state space between states s, s′ is denoted by s V

=⇒ s′, with V ∈ Σ∗
a sequence of actions α0, . . . , αn (n ∈ N and Σ∗ the set of all finite sequences
made up of actions in Σ) such that there exist states s0, . . . , sn+1 with s0 = s,
sn+1 = s′, and si

αi−→ si+1 for 0 ≤ i ≤ n. We define the set of reachable states
as: R ≡ {s ∈ S | s0 →∗ s}, i.e. a subset of S, or all syntactically-allowed
variable valuations in M .

To reflect the fact that the state space is generated on-the-fly, hence not
known a-priori, we sometimes use a next-state function en : S → 2S instead of
T directly. On-the-fly checking procedures iteratively query all successors of all
visited states, starting from the initial state.

To reason about correctness of reactive systems, ϕ may refer to infinite paths.
We consider properties that are already incorporated in the state space of M .
Well-known techniques exist to construct such so-called cross-products while still
allowing on-the-fly verification [1, Ch.4]). Such state spaces are (finite) Büchi
automata B = (G,F), where F ⊆ S is a set of accepting states. B accepts ω-
regular words VWω with V,W ∈ Σ∗ and Wω the infinite repetition of W . A
word VWω is accepted by B iff there exists an infinite path labeled VWω that
reaches an infinite number of accepting states. Since B is finite-state, this means
that there must exist a path s0

V
=⇒ s W

=⇒ s and for some XY = W , s X
=⇒ s′, we

have s′ ∈ F . Since s′ is an accepting state, we call s X
=⇒ s an accepting cycle. So,

finite Büchi automata accept all traces that end in an accepting cycle, i.e. are
lasso-formed. An accepted trace represents a counter-example in M to ϕ, hence
the verification problem is reduced to finding accepting cycles that are reachable
from the initial state, which can be done in time linear to the size of the state
space using, for example, the well-known sequential algorithm NDFS [7].

Multi-core LTL checking. CNDFS [8] is a parallel LTL model checking algorithm,
based on NDFS [7]. In NDFS, a DFS is run from s0 to find reachable accepting
states, and from each accepting state s ∈ F , a nested DFS is launched to find a
cycle containing s. Because of the order in which states are visited, NDFS runs
in time linear to the state space size. For clarity, in the following, we refer to the
outer DFS finding accepting states as the blue search, and to the nested DFS as
the red search. These colors relate to how the searches affect the global state of
the algorithm. Initially, all states are white. The blue search colors states cyan
when it puts states on its stack, and blue when the state is fully explored and
popped again from the stack (backtracked). The red search colors states pink
when placed on its stack, and red when backtracking.
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Algorithm 1 CNDFS with parallel cycle proviso (in boxed lines)

Require: ∀s ∈ S : s.prov = ?
1: procedure cndfs(s0, P )
2: dfsBlue1(s0) || . . . || dfsBlueP (s0)
3: report no-cycle

4: procedure dfsRedp(s)
5: s.pink [p] := true
6: Rp := Rp ∪ {s}
7: stack selp(s) := por(s)
8: for all s′ ∈ mixp(selp(s)) do
9: if s′.cyan[p] then

10: report accepting cycle

11: if s′ 6∈ Rp ∧ ¬s′.red then
12: dfsRedp(s′)

13: if selp(s)=por(s)∧por(s)⊂en(s) then
14: new := ∃x ∈ por(s) : x.pink [p]
15: cas(s.prov , ?,new)
16: if s.prov = true then
17: selp(s) := en(s)
18: goto l.8

19: s.pink [p] := false

20: procedure dfsBluep(s)
21: s.cyan[p] := true
22: stack selp(s) := por(s)
23: for all s′ ∈ mixp(selp(s)) do
24: if ¬s′.cyan[p] ∧ ¬s′.blue then
25: dfsBluep(s′)

26: if selp(s)=por(s)∧por(s)⊂en(s) then
27: new := ∃x ∈ por(s) : x.cyan[p]
28: cas(s.prov , ?,new)
29: if s.prov = true then
30: selp(s) := en(s)
31: goto l.23

32: s.blue := true
33: if s ∈ F then
34: Rp := ∅
35: dfsRedp(s)
36: await ∀s′ ∈ Rp ∩ F \ {s} : s′.red
37: forall s′ ∈ Rp do s′.red := true

38: s.cyan[p] := false

In CNDFS, several workers explore the state space mostly independently by
each running a randomized NDFS; it is randomized w.r.t. the order in which the
successors of each state are visited. Algorithm 1 without the boxed code (lines
13-18 and 26-31), and with selp(s) = en(s) at l.7 and l.22, shows CNDFS. The
algorithm is called for a given number of workers P . Each worker p starts by
executing dfsBluep(s0), which starts the blue search. A local set of successor
states selp(s) is initialized to en(s) at l.22. For clarity, we use a notation that
distinguishes such sets for different p and s, but in practice, a stack-local vari-
able is sufficient, i.e. the full definition of a function selp does not need to be
maintained throughout the search. This is indicated with the stack keyword.
Randomization of visiting successors of s is achieved through the function mixp.
If a state s is accepting, a red search is launched from it (l.35), to try to find a
cycle containing s. In the red search, again local state sets are used to inspect
successors (l.7). A cycle containing s is detected once a cyan state is reached
(l.9). Since a cyan state is on the stack of the blue search, and accepting state s
from which the red search has been launched is at the top of this stack, reaching
any cyan state means that a complete cycle exists containing s.

CNDFS scales particularly well because some information is shared between
workers. The blue color is shared between blue searches, hence when one worker
has colored a state blue, other workers will not explore it anymore (l.24) (of
course, local cyan states are also not added to the stack). In principle, one
would also like to share the red color between red searches. It has been shown [8],
however, that this cannot be done in a similar fashion. For correctness, one can
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only share this information once a red search has completely terminated. For
this reason, we use a worker-local red set Rp, consisting of the states that have
been explored by the red search of worker p, which is constructed as a red search
continues, and only made globally red (l.37) once the worker knows that all
out-of-order red searches in the same search region have terminated (l.36).

CNDFS’s complexity can be linear in the size of the graph, and its scalability
is good (although for some graphs, its performance reduces to that of sequen-
tial NDFS). CNDFS has been shown to perform better than the fixpoint-based
owcty algorithm [2] – for many years the best known algorithm for parallel
LTL model checking – which has a worst-case quadratic complexity.

Partial-order reduction. POR prunes interleavings by constraining the next-
state function en. This selection should preserve the property at hand (safety or
liveness), and can be performed with the state-local information combined with
some static analysis of M (mainly involving the commutativity of its operations).

A (state-local) POR function prunes G on-the-fly during exploration by se-
lecting in each state s a subset of the enabled transitions, the reduced set por(s) ⊆
en(s). POR definitions often allow multiple valid reduced sets, including trivially
por(s) = en(s). Smaller reduced sets often lead to smaller state spaces, but this
is not necessarily the case [31]. Therefore, POR is heuristic in nature.

Over the years, several techniques have been developed to select sufficient
subsets of enabled transitions, such as the stubborn set technique [30]. Since the
selection of subsets of enabled transitions is orthogonal to our proposed CNDFS
algorithm with POR, we consider the subset selection algorithm as a given,
implemented with a function por : S → 2S . For a detailed explanation of the
implementation of a POR subset selection algorithm, see [21].

The ignoring problem. Valmari identified the incompleteness of POR with re-
spect to the preservation of liveness properties [29]. As liveness properties reason
over infinite paths in B, (state-local) POR may exhibit ignoring, i.e. continuously
exclude actions leading to counter examples from the reduced set. The introduc-
tion of the ignoring proviso solved this, by forcing the involvement of all relevant
transitions when constructing reduced sets. Because these ignoring provisos de-
pend on global properties of B, i.e. cycles in its G, we first define a dynamic
function sel which relaxes the por function such that por(s) ⊆ sel(s) ⊆ en(s)..

The exact dynamic definition of sel will be part of the on-the-fly exploration
algorithms presented in the subsequent section. The definition of the proviso
now depends on the reduced state-space graph induced by sel a posteriori (after
the termination of the exploration algorithm). We denote this reduced graph
G = (s0, T ,S), with T ⊆ T such that each (s, α, s′) ∈ T is also in T iff s′ ∈ sel(s).
Transitions in this graph are denoted s→s′, and we define R ≡ {s ∈ S | s0→∗s}.
We define B as (G,F), so that any mention of G and R generalizes to B.

The ignoring proviso can now be defined on the reduced state space. (Ignoring
provisos weaker than the follwoing exist, see e.g. [32], but their refinements are
orthogonal to the cycle detection problem that we aim to solve here.)

Cycle Along each cycle in G, at least one state s is fully explored (sel(s)=en(s)).
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An implementation of the Cycle ignoring proviso thus needs to identify cycles
on-the-fly and include all transitions of at least one state on each cycle. However,
selecting the smallest set of states covering all (possibly overlapping) cycles is
an NP-complete problem, known as the vertex feedback set in graph theory [13].
Therefore, in practice, this proviso is implemented using DFS, which guaran-
tees full exploration of at least one state on each cycle, and can be performed
efficiently [9]. In this (stronger) form, the proviso is as follows:

Stack When running a depth-first search (DFS) over G, each state s ∈ R that
has a successor s′ ∈ por(s) on the stack, should be fully explored.

The Stack proviso overestimates the amount of states to explore fully, but
has been improved over the years to yield excellent reductions [9].

In the next section, we present how to detect cycles in parallel, enabling POR
in that setting. The preciseness that is achieved by this method is expected to be
better than in related parallel solutions (see Section 4 for experimental results).

3 Multi-Core Partial-Order Reduction

In the current section, we present a parallel cycle proviso for both safety and
liveness properties, for use in parallel DFS-based algorithms. The presented algo-
rithms indirectly implement the sel function on which the reduced state space R
was defined in the previous section. While we are mainly interested in a com-
plete solution for LTL model checking, we commence with a solution for safety
properties, in order to introduce the approach in a stepwise fashion.

3.1 Partial-Order Reduction for Safety Properties

Checking safety properties can be done through reachability analysis. To show
how the ignoring problem can be solved for safety properties, we introduce a
parallel algorithm that launches multiple DFS workers. We refer to this approach
as parallel DFS. While it is not the most efficient approach to do reachability
analysis – for a better approach see [16] – parallel DFS provides a nice first step
towards combining POR with CNDFS.

Safety properties are preserved by a weaker version of the ignoring proviso.
One such version concerns bottom Strongly Connected Components (SCCs), i.e.
SCCs without outgoing transitions:

BottomSCC For all states s ∈ R of G, there exists a fully explored state s′

(sel(s′) = en(s′)) such that s→∗s′. (this boils down to having one fully
explored state in each bottom SCC of G, c.f. [32]).

Our parallel DFS with POR should detect at least one state in all bottom
SCCs in G. Valmari’s SCC method is optimal [29] for this purpose. However, we
use the stronger Stack’ condition, which serves our introductory purpose better
as it resembles the ignoring proviso required to preserve LTL (see the Stack
proviso in the previous section):
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Algorithm 2 Parallel DFS with POR

Require: ∀s ∈ S : s.blue = false
Require: ∀s ∈ S, p : s.cyan[p] = false
1: procedure pardfs(s0, P )
2: dfs1(s0) || . . . || dfsP (s0)
3: report no-cycle

A: cas(s.prov , ?, ∀x ∈ por(s) : x.cyan[p])
B: if s.prov = true then
C: selp(s) := en(s)
D: goto l.7

4: procedure dfsp(s)
5: s.cyan[p] := true
6: stack selp(s) := por(s)
7: for all s′ ∈ mixp(selp(s)) do
8: if ¬s′.cyan[p] ∧ ¬s′.blue then
9: dfsp(s′)

10: if selp(s)=por(s)∧por(s)⊂en(s) then
11: if ∀x ∈ por(s) : x.cyan[p] then
12: selp(s) := en(s)
13: goto l.7

14: s.blue := true
15: s.cyan[p] := false

Stack’ When running a DFS exploration over G, each state s ∈ R for which all
successors in por(s) are on the stack, should be fully explored.

Consider Algorithm 2 without the boxed lines (lines 10–13 and A–D) and with
selp(s) = en(s) at l.6. (We use a local selp to explain how workers communicate
successor sets, the global sel is defined later.) It starts P parallel DFS workers at
l.2, which initially each independently traverse the state space (see the local cyan
color at l.5 and l.15, indicating that a state is currently on the DFS stack). When
backtracking, the workers communicate by marking states globally as visited at
l.14 (with the color blue). Clearly, this algorithm explores all reachable states,
and hence terminates on finite state spaces, since a state s is only colored globally
blue once all states reachable from s have either been explored (are colored blue)
or are going to be explored in the future (are colored cyan).

To introduce POR for safety properties, the ignoring proviso BottomSCC
needs to be satisfied. We show that this is done by adopting the Stack’ proviso
in parallel DFS as a parallel Stack’ proviso at l.10-13. The resulting algorithm
will find at least one state on each cycle, and this state will be fully explored by
at least one worker. At l.6, selp(s) is now actually set to por(s), and l.10 checks
whether this is still true. This ensures that the proviso check is performed at
most once for each state s on the stack. When all successors of s are on the
stack (∀x ∈ por(s) : x.cyan[p]) (l.11), the premise of the Stack’ proviso holds,
and all successors are selected for visiting at l.12 (to satisfy the conclusion of
the proviso), before restarting the for loop at l.13. (The redundant reselection
of por(s) ⊂ en(s) can be avoided, but is used here to simplify our proofs.) The
second time that l.10 is reached, selp(s) is no longer set to por(s), so the check is
not performed a second time. To handle the special case that por(s) = en(s), we
require at l.10 that selp(s) ⊂ en(s). Otherwise, an infinite goto loop would occur.

In the following proofs, we assume that each line of the code is executed
atomically. The global state of the algorithm is the coloring ofR and the program
counter of each worker. We use the following notations: The sets Cp and B
contain all the states colored cyan by worker p, and globally blue, respectively.
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For example, s.cyan[p] = true is expressed as s ∈ Cp. To reason on the a
posteriori explored graph, we define sel(s) = en(s) iff ∃p ∈ {1 . . . P} : selp(s) =
en(s), and sel(s) = por(s) otherwise (notice that selp(s) only grows). Finally,
we use the modal operator s ∈ �X to reason about the successors of s in G, i.e.
∀s′ ∈ sel(s) : s′ ∈ X, and for local successors: s ∈ �pX ⇒ ∀s′ ∈ selp(s) : s′ ∈ X.
We write Fp(s)@L to indicate that thread p is about to execute l.L of function F ).

The first lemma shows colorings of local successors of backtracked states,
while the second relates backtracked states to the coloring of global successors:

Lemma 1. When worker p marks a state s blue, its local successors are blue or
cyan local to worker p: dfsp(s)@14⇒ s ∈ �p(B ∪ Cp).

Proof. At l.14, each local successor s′ has either been skipped at l.8 (so s′ ∈
B∪Cp), or dfsp(s

′) had been called at l.9 leading to t ∈ B. So s′ ∈ (B∪Cp). ut

Lemma 2. Global successors of blue states that are not cyan, are blue or cyan:⋃
p(B \ Cp) ⊆ �

⋃
p(B ∪ Cp).

Proof. Initially,
⋃
p(B \ Cp) is empty and the lemma holds. A state s is added

to this set when the last worker p reaches dfsp(s)@l.15. Locally, we have s ∈
�p(B ∪ Cp) by Lemma 1, but since all workers backtracked s ∈

⋃
p�(B ∪ Cp)

holds as well. Finally, states are never removed from B ∪ Cp. ut

To reason about states for which the proviso’s conclusion holds, we consider
all states s with sel(s) = en(s), i.e. inviolable states, as belonging to a set I, and
all others with sel(s) ⊂ en(s) as belonging to a set N (violable states).

Lemma 3. In Algorithm 2, each blue state s can reach an inviolable state s′:
∀s ∈ B : (∃s′ ∈ I : s→∗s′).

Proof. B is only modified at l.14. I and N are ‘modified’ right before l.14.
Initially, B is empty, so the lemma holds. By Lemma 1, when the first state s

is marked blue, it will have blue and cyan successors. Since at that point, there
are no blue states yet, all successors of s must be cyan. But then, s must be
inviolable at l.14, so s ∈ I (if por(s) = ∅, then en(s) = ∅, since POR does not
introduce deadlocks). All subsequent states marked blue either are identified as
inviolable, satisfying the lemma with s ≡ s′, or have at least one blue successor
s′ 6≡ s, for which the theorem already holds. ut

Finally, by showing that from each state reached by parallel DFS, an invio-
lable state is reachable, we clearly show that BottomSCC is satisfied.

Theorem 1. Algorithm 2 explores all s ∈ R, and satisfies BottomSCC:
∀s ∈ R : (∃s′ ∈ I : s→∗s′).

Proof. Due to l.10 and l.12, the goto can only be executed once per state. And
since the set B ∪

⋃
p Cp grows monotonically in Algorithm 2, eventually the

algorithm terminates for finite input graphs (see Section 8). By the obvious
post-condition of DFS-based algorithms, we have s0 ∈ B at that moment. By
Lemma 2, and the fact that

⋃
p Cp = ∅ (the stacks are empty), we have B ⊆ �B.

Hence, R = B, and it follows from Lemma 3 that BottomSCC is satisfied. ut
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Algorithm 2 has the downside that it could identify more inviolable states
than strictly necessary, as the following example shows.

Example 1. The cycle in the graph on the right has mul-
tiple entrypoints. When different workers (with differ-
ent search orders) enter the cycle differently, they deter-
mine a different inviolable state: a worker A entering via
a will choose d (as it finds a to be cyan after traversing
the cycle), while a worker B entering via d chooses c.

a b

cd

s0

A coherent view of the state space. The problem that Algorithm 2 still exhibits,
is that different workers obtain a different view of the state space, as they identify
different inviolable states. As these are fully explored, the reduction can be lim-
ited. Therefore, we introduce synchronization between threads on their decision
whether a state is inviolable or not. To realize this, we add a 3-valued variable
per state called prov , initially set to unknown (‘?’). This variable is global, hence
workers can communicate with each other through the prov variables.

The boxed code at lines A–D should replace the parallel proviso check of lines
11–13. Upon backtracking, threads use the well-known atomic compare-and-swap
(cas) operation to communicate their decision on a first-come-first-serve basis.
The cas operation is defined as follows: cas(x, v1, v2) atomically checks if variable
x has value v1, and if so, sets x to v2. This solution does not completely prevent
redundant inviolable states (w.r.t. to the Stack’ proviso), but it can prevent
some. For instance, in Example 1, c can be prevented from becoming inviolable,
if worker A backtracks over c before worker B, marking c as violable.

Correctness of the modified algorithm follows from Lemma 4. It reasons on
the states whose violability status has been determined (s.prov 6= ?) or is known
upfront (por(s) = en(s)), captured by the final set: F = {s ∈ R | s.prov 6= ? ∨
por(s) = en(s)}. The lemma shows that when a state s is determined to be
violable (s ∈ F ∩N), then s has a blue successor (for which Lemma 3 holds).

Lemma 4. At least one global successor of a permanently violable state is blue:
F ∩N ∩�B 6= ∅.

Proof. A state s is added to F ∩N after l.A sets s.prov to false. By Lemma 1
and the fact that ∀x ∈ por(s) : x.cyan[p] evaluated to false, we know there must
be one blue successor (again if por(s) = ∅, then en(s) = ∅ and s /∈ N). ut

3.2 Partial-Order Reduction for Liveness Properties

For liveness properties, the Cycle proviso needs to hold (Section 2), which is met
in finite state-space graphs if along all cycles at least one state is fully explored.
In addition to this, CNDFS should search for accepting cycles, which constitute
counter-examples (instead of G, the algorithms now work on B). In the current
subsection, we show that CNDFS with POR and a novel parallel cycle proviso,
similar to Stack, fulfills Cycle. First, we discuss how we solve a related problem.

Traditional (sequential) NDFS detects accepting cycles by launching a nested
(red) DFS search from each accepting state found in the outer (blue) DFS search
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(see Section 2). Combining NDFS with POR and the Stack proviso yields a so-
called revisiting problem [12]; in order for NDFS with POR to be complete, it is
crucial that for every state s, the selection of sel(s) is deterministic. This means
that two constraints must be satisfied: (1) if a state is deemed inviolable, then
all searches reaching it must be aware of this and select all successors, and (2) if
a state is violable, the same subset must always be selected by the por function.

For the NDFS algorithm in [28], the revisiting problem can solved straightfor-
wardly, by only selecting blue and cyan successors in the red search [28, Sec. 6].
This enforces that each state reached in a red search is explored in the same way
as previously done in the blue search. However, in CNDFS, this approach does
not apply because different searches run out of order executions; in particular,
red searches may sometimes visit white states (see the proof of [8, Prop. 3]).

However, the revisiting problem of CNDFS with POR can be solved as fol-
lows. First of all, it is crucial that the subset selection mechanism is deterministic.
This can be achieved efficiently, e.g. via guard-based POR [21]. Second of all, the
decisions regarding proviso status of states is made global via synchronization
methods similar to those used in the previous subsection, now also indicated by
the boxed code in Algorithm 1. It implements the Stack proviso in both the blue
and the red DFS. In the blue DFS, we check for the existence of at least one cyan
successor (l.27), and in the red DFS for the existence of a pink successor (l.14).
The mechanism to store the results using cas and s.prov is exactly as presented
earlier for parallel DFS. This implements our parallel cycle proviso.

In the following correctness proofs, we refer with Pp to the pink states of
worker p and with Red to the (globally) red states. We also construct a set of
states backtracked in a red search: R ≡

⋃
p(Rp \ Pp) ∪ Red (all states that are

either in some local Rp but not on the pink stack, or globally marked red).
Now that we have selp(s) = sel(s) at l.32, we can relate blue states to their

(global) successor colorings (the proof is similar to that of Lemma 1):

Lemma 5. Successors of blue states are blue or cyan: B ⊆ �
⋃
p(B ∪ Cp).

The next lemma expresses that for backtracked states, a decision has been
made concerning their violability status.

Lemma 6. Blue states and states backtracked in a red search have been consid-
ered for violability: B ∪R ⊆ F .

Proof. A state s is colored blue at l.32. If por(s) = en(s), then s ∈ F . If por(s) ⊂
en(s), then l.28 has been executed, hence s ∈ F . A state s is colored red at l.37.
There, we have s ∈ Rp∧s /∈ Pp, hence already s ∈ R. Also, at l.19, a state s is in
R, since s 6∈ Pp. But then, either por(s) = en(s), and s ∈ F , or por(s) ⊂ en(s),
and l.15 has been executed, so s ∈ F . ut

The following lemmas help to prove Theorem 2, expressing that Algorithm 1
satisfies the Stack proviso, which implies that Cycle is satisfied.

Lemma 7. Successors of states backtracked in the red search have also been
backtracked in the red search or are pink: R ⊆ �

⋃
p(R ∪ Pp).
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Proof. Since R ≡
⋃
p(Rp \ Pp) ∪ Red , we have

⋃
p(R ∪ Pp) ≡

⋃
p((Rp \ Pp) ∪

Pp) ∪ Red , so we need to prove that R ⊆ �
⋃
p(Rp ∪ Red). A state s is added

to R when it is removed from Pp at l.19, since at that point s ∈ Rp. At l.34,
if Rp is non-empty, states are removed from Rp, but those were added to Red
at l.37 after the previous dfsRedp(s) terminated. Once added to Red (and R),
states are never removed again. At l.19, all successors t have been considered at
l.9–12. If t 6∈ Rp ∪ Red , then dfsRedp(t) is executed adding t to Rp. So at l.19,
we have s ∈ �(Rp ∪ Red). ut

Lemma 8. Successors of permanently violable states are blue or backtracked in
a red search: F ∩N ⊆ �(B ∪R).

Proof. A state s is permanently marked violable before l.19 and l.32. Because
the conditions at l.14, resp. l.27, do not hold there, no successor s′ of s can be
pink, resp. cyan. By Lemma 7 (resp. Lemma 5), all s′ are in R (resp. B). ut

Theorem 2. Algorithm 1 explores all states in R of B, and fully explores one
state on each cycle in B.

Proof. The termination proof is analogous to that in Theorem 1.
We prove that the proviso holds by contradiction. Assume Algorithm 1 ran

to completion, and as a result some cycle C = s1 → · · · → sn → s1 contains no
inviolable state: ∀i ∈ {1 . . . n} : si ∈ N . Take the last time that a state sx with
x ∈ {1 . . . n} on C was permanently added to N (sx.prov is set to false at that
moment). At this time, some worker p must be executing either l.15 or l.28. The
immediate predecessor sy of sx on the cycle must have been in F ∩ N before
sx is marked, since sx was the last state to be permanently marked violable.
Therefore, by Lemma 8, sx ∈ B ∪R. But then, by Lemma 6, sx ∈ F . The latter
contradicts our assumption that sx is last marked permanently violable, which
can only happen if its proviso flag is still set to ‘?’, i.e. sx 6∈ F or sx ∈ I. ut

4 Experimental Evaluation

Experimental Setup We implemented Algorithm 1 in the LTSmin toolset. This
toolset [17] is a language-independent model checker and supports POR since
version 1.6. To this end, LTSmin’s Pins interface was extended with new fun-
tions in order to export the necessary static information [21]. We experimented
with DVE models from the BEEM database [27] and Promela models [11];
both are supported by LTSmin via different language modules [4,17]. The se-
lected models and properties are presented in Table 1, and include industrial case
studies in Promela as well as representable instances from the large BEEM
database. We focus on instances where the properties hold, because on-the-fly
bug-hunting is not a bottleneck in our experience [8]. We performed experi-
ments with version 2.1 of LTSmin.4 All experiments were repeated 10 times on
a quadruple AMD Opteron 6376 CPU with 64 cores and 512GB RAM memory.

4 http://fmt.cs.utwente.nl/tools/ltsmin/ (see [8] for command lines)

11

http://fmt.cs.utwente.nl/tools/ltsmin/


Table 1. DVE/Promela models and LTL properties used (all correct)

Model (DVE) Property

leader filters.7 ♦(#elected 6= 0)
elevator.3 �(in ⇒ (♦out))
leader election.* ♦(#leaders 6= 0)
anderson.6 �(req ⇒ ♦CS)

Model (Promela) Property

garp �♦progress
iprotocol-2 �♦progress
pacemaker distibuted �(p ∧ (q ⇒ r))
pacemaker concurrent �((p⇒ q) ∧ (r ⇒ s))

The results presented here focus primarily on the efficiency of the reduction of
the parallel cycle proviso in LTL model checking. The main question that is an-
swered is whether the parallel cycle proviso introduces too many inviolable states
with respect to the sequential cycle proviso. We also did some analysis on the
obtained scalability of CNDFS with POR, mainly to confirm that scalability is
not lost; in the past, CNDFS has shown to scale well and often better than other
parallel LTL model checking algorithms [4,8]. The complete set of experimental
results are available at http://fmt.cs.utwente.nl/tools/ltsmin/hvc-2014.

We would have preferred to compare the parallel cycle proviso with the topo-
logical sort proviso [3] in DiVinE (see ??), the most sophisticated solution thus
far, but the POR algorithm in DiVinE delivers less reductions than LTSmin’s
stubborn set implementation making a tool-by-tool comparison senseless. We
did not reimplement the topological sort proviso because it seems impossible to
combine it with CNDFS. Instead, we compare our conclusions with [3].

Reduction Performance. Sequentially, the CNDFS algorithm is equal to the
NDFS algorithm modulo the fact that states are not instantly colored red, but
only after the nested search [8]. Similarly, the parallel cycle proviso should be
equal to the stack proviso when run with one thread. With increasing paral-
lelism, the algorithm has the potential to select more states as inviolable as

Table 2. POR reductions (percentages) without ignoring proviso, with stack proviso
and with parallel cycle proviso (with multiple threads) averaged over 10 runs.

Parallel cycle proviso (threads)
Model |R| None Stack 1 4 8 16 32 64

leader filters.7 26,302,351 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35
elevator.3 495,463 92.46 92.86 94.20 94.49 94.64 94.77 94.85 94.96
leader election.4 746,051 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02
leader election.6 35,773,430 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69
anderson.6 29,315,027 15.80 33.11 48.43 52.28 52.83 52.93 52.34 51.71
garp 67,108,837 6.25 18.68 18.69 20.23 20.85 20.69 20.64 20.79
peterson4 67,108,842 14.19 15.82 15.52 15.60 15.64 15.63 15.67 15.67
iprotocol-2 18,998,110 30.95 32.24 34.80 36.31 36.71 37.10 37.46 37.91
pacemaker distributed 67,108,832 31.13 47.89 47.81 47.86 47.94 47.98 48.16 48.26
pacemaker concurrent 18,092,815 42.06 46.05 45.90 45.88 45.92 45.92 45.96 46.00
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Table 3. CNDFS runtimes (sec.) without POR (Full), without ignoring (None), with
stack proviso (Stack), and with parallel cycle proviso averaged over 10 runs.

Parallel cycle proviso (threads)
Model Full None Stack 1 4 8 16 32 64

leader filters.7 85.32 5.59 5.42 5.60 1.46 0.82 0.45 0.26 0.19
elevator.3 1.83 196.17 185.24 228.41 78.14 47.54 29.50 19.12 14.75
leader election.4 5.68 6.33 6.16 6.51 2.28 1.93 1.23 1.23 1.93
leader election.6 399.94 0.88 0.84 0.90 0.23 0.13 0.07 0.04 0.04
anderson.6 168.10 29.55 64.42 121.74 63.57 43.90 29.55 19.53 14.87
garp 426.06 15.66 52.09 62.52 28.54 18.75 12.03 7.69 5.94
peterson4 287.62 30.30 35.93 39.67 11.83 6.56 3.85 2.19 1.49
iprotocol-2 68.90 84.39 85.31 115.31 40.07 23.70 14.47 8.69 6.28
pacemaker distributed 211.65 99.56 156.25 167.62 43.88 23.66 13.25 7.33 4.86
pacemaker concurrent 55.16 256.92 332.50 342.65 88.68 46.01 24.72 12.88 7.97

explained in Example 1. We are interested in determining these relative differ-
ences in reductions (between the stack proviso and the parallel cycle proviso). As
a measurement, we choose the total number of states stored in the hash table.
Although the relation between reduced state space size and number of invio-
lable states is only heuristic (exploring a different, but larger subset of states
fully could yield a smaller reduced state space [10]), we are unaware of a better
measurement.

Table 2 shows the size of the reduced state spaces relative to the original
state space. For completeness, we also included the results without any ignoring
proviso (which might miss counter-examples). All models show similar paral-
lel reductions to the stack proviso, except anderson.6. We suspect that this is
caused by a slightly more efficient implementation of the stack proviso, in par-
ticular concerning the revisiting problem, in the sequential nested search which
does not work in a parallel setting (see [28] and discussion in Section 3.2).

A slight decrease in reductions when the number of threads is increased can
be observed, the effect is however minimal and often sublinear with the most
increase caused by 4 threads already. Hence we can conclude that CNDFS with
POR does not cause too many redundant full explorations. This is a surpris-
ing result, as the parallel benchmarks in [3] seem to show a steep decrease in
reduction performance.

We cannot explain precisely why the reductions sometimes improve with
more parallelism, e.g. anderson.6 (recall that we present averages over 10 ex-
periments). The behavior might be caused by different thread schedulings.

Runtime Performance. Table 3 shows that the runtimes of CNDFS with POR
are similar to those of NDFS with stack proviso (discounting the state space
difference for anderson.6). The overhead of the proviso bits is thus minimal.

Scalability. Figure 1 shows that CNDFS with POR exhibits good speedups for
larger models (see Table 3). Comparing these speedups to those obtained earlier
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Fig. 1. Plot of parallel scalability (speedup) of CNDFS with POR.

without POR [8], we see that they are largely unaffected. It is not surprising
that the smaller (reduced) leader-election model with only a few thousand
states exhibits sublinear speedup.

5 Related Work

Applying POR when model checking liveness properties involves an ignoring
proviso which may cause orders of magnitude loss in reductions (c.f. [15,9]). In a
sequential setting, the use of DFS-based algorithms could mitigate these losses
almost completely in the past (c.f. [15,9,29]). However, those techniques cannot
be used in parallel, i.e. multi-threaded, shared memory, model checking.

In related work, several other attempts have been made to implement the
ignoring proviso for similar parallel settings.

1. The topological sort proviso [3] uses the distributed Kahn algorithm for topo-
logical sort. When the sort is incomplete due to cycles, these nodes are re-
moved (fully explored) and the algorithm is restarted up to fixpoint.

2. The two-phase proviso [26] skips new states with singleton reduced sets,
trivially avoiding cycles by fully exploring other states.

3. A distributed version of Spin [22], implements the Stack’ proviso for safety
properties, while conservatively assuming that successors maintained by other
workers are on their respective stacks.

4. A stronger alternative for the Stack proviso is one tailored for BFS, where
all states reaching queued states are fully explored [5,6].

5. Static POR identifies cycles already in the system specification [14].
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All of the above methods have either shown to offer significantly less reduction
than the Stack proviso (4 and 5), only work for safety properties (3), or have
shown a degrading performance when the amount of parallelism is increased,
often already noticable with 4–8 workers (1 and 2).

Finally, Evangelista and Pajault [9] further optimized the Stack proviso to
avoid unnecessary full explorations on overlapping cycles and on cycles that al-
ready contain fully explored states. We are the first to adopt these optimizations
in a parallel setting.

6 Conclusions

In this paper, we proposed how POR can be integrated in parallel DFS-based
search algorithms, in particular in both a parallel DFS reachability algorithm,
and CNDFS for on-the-fly LTL model checking. The used parallelization tech-
nique is very promising, since very good speedups occur in practice.

To integrate POR, the main challenge was to ensure that when confronted
with cycles, the parallel threads explore beyond them, i.e. they do not contin-
uously ignore actions that may lead to new reachable states. This is known as
the ignoring problem. Furthermore, for completeness, the two DFS searches in
NDFS need to agree on which transitions are explored from each state, and for
CNDFS, earlier solutions for this revisiting problem are not correct. We pro-
posed solutions for both these problems. Experimental results indicate that our
solution for CNDFS does not harm the scalability of it, while reductions are
achieved that are comparable when applying POR in a sequential NDFS.

For future work, the ideas from the color proviso [9] could be incorporated
in the parallel cycle proviso, since both are based on a stack check. We expect
similar improvements as witnessed in [9].
Acknowledgements. We thank Tom van Dijk for providing access to the 64-core
machine at the FMT department of the University Twente.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
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